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Abstract Recent advancements of virtualization technologies for parallel pro-
cessing involve scheduling containerized tasks in a workflow. Since a container
can include multiple tasks, it can be reused or shared among applications. If
every task in a workflow uses its dedicated container without sharing among
any tasks, each container image must be downloaded for each task. As a result,
many computational resources are required to process and the communication
latency related to container image downloading can become a bottleneck for
the makespan. In task scheduling algorithms for workflows, this characteris-
tic produces a new challenging issue that how effectively shares containers
among tasks to avoid redundant container image download processes and re-
dundant task allocations. One of the fundamental problems is that no policy
has been established for simultaneously satisfying effective container sharing,
maintaining the degree of task parallelism, and effective computational re-
source utilization.

In this paper, we propose a clustering-based containerized task scheduling
algorithm for clouds, namely, shareable functional task clustering for utilizing
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virtualized resources (SF-CUV). The objective of SF-CUV is to minimize the
makespan with less computational resources and containers than other algo-
rithms by clustering tasks and sharing each container among tasks. SF-CUV
consists of two phases: (i)task clustering and pre-virtual CPU (vCPU) alloca-
tion phase to derive an accurate scheduling priority, and (ii)task ordering and
actual task reallocation phase. Experimental results obtained via simulation
and in a real environment show that SF-CUV can utilize both vCPUs and
containers with a shorter makespan compared with other approaches.

Keywords Task scheduling · Task clustering · Workflow scheduling ·
Containerized task · Task clustering · Resource Utilization · Cloud

1 Introduction

Recent advancements in communication networks include virtualization of net-
work equipment, such as routers, firewalls, and load balancers, to utilize in-
formation flows and satisfy quality-of-service (QoS) requirements from both
users and system administrators. Such network equipment can be virtualized
at a software level to provide the same functionality by network function vir-
tualization (NFV) [1,2]. Each function is typically called a service function
(SF) for a service-oriented processing or virtualized network function (VNF)
for handling network flows. In particular, multiple functions can be chained to
output the composite processing results by service function chaining (SFC) [3,
4], which can be implemented as a set of containers or virtual machines (VMs).
A container can include multiple processes and executables, and the same con-
tainer can be shared among “tasks”1. Sharing one container among multiple
tasks (i.e., containerized tasks) can localize communications among them and
redundant container image downloading can be avoided.

The objectives of conventional containerized task allocation algorithms for
a chain-structured application are minimization of the communication latency
among tasks [5,10,15,19], maximization of the service data rate [7,8], mini-
mization of task allocation cost [10,12–17,20], minimization of the number of
VM instances [6,11,20], minimization of the makespan [9,10,17,22], and op-
timizing the routing cost [7,13,15,16,19] by using a search algorithm, integer
linear programming (ILP), etc. Though task allocation algorithms from the
literature [6,7,10,11] allocate tasks with container or VM sharing, they do
not consider the balance between the communication locality and the degree
of parallelism. This is because they focus on only satisfying the capacity con-
straint when each task is allocated, rather than minimizing the makespan with
effectively utilize computational resources. If a criterion for task allocation is
to satisfy the capacity constraint, each task is allocated to a computational
resource having a large residual capacity. As a result, many computational re-
sources are required for task allocation, thereby computational resources may
be exhausted.

1 A “task” in this paper means a set of execution units that corresponds to one transac-
tional command and is supposed to be atomic.
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In a workflow where multiple containerized tasks have precedence relation-
ships with others, the degree of parallelism, communication localization among
tasks, and the required numbers of container image downloading are factors
for determining the makespan. For conventional containerized tasks in a work-
flow, a task allocation algorithm with minimizing the embedding cost [18], a
provisioning method [22], and a fair CPU resource sharing method [23] have
been proposed. In a workflow, the literature [24] proposes a task scheduling
algorithm to minimize the makespan by utilizing bandwidth. However, no cri-
terion exists for suppressing the number of both computational resources and
containers. In the above approaches for task allocation and scheduling for both
a chain and a workflow, no policy has been established for simultaneously sat-
isfying effective container sharing, maintaining the degree of task parallelism,
and effective computational resource utilization.

In this paper, we propose a clustering-based containerized task scheduling
algorithm for clouds, namely, sharable functional task clustering for utilizing
virtualized resources (SF-CUV). The objective of SF-CUV is to minimize the
makespan with less computational resources and containers than other algo-
rithms by clustering tasks and sharing each container among tasks. SF-CUV
consists of two phases; phase (i): the task clustering and pre-vCPU allocation
phase and phase 2: task ordering and actual task reallocation phase. Thus, SF-
CUV is applicable where multiple workflows having containerized tasks must
be processed simultaneously in a limited number of computational resources.
For example, a large image file must be transformed to be analyzed (e.g.,
to recognize specific objects in the image), it can be divided into sub-images
to be processed in parallel. If no executable module has been installed on a
computational resource, containers can be dynamically pulled and installed on
it. In such a case, the makespan should be minimized by avoiding redundant
container image downloading with SF-CUV. Since such requirements need a
software-level control for communication and allocating each task to a pro-
cessor, SF-CUV can be implemented on SDN or clouds. Experimental results
obtained via simulation and in a real environment show that SF-CUV can uti-
lize both vCPUs and containers with a shorter makespan compared to other
approaches. The main contributions of this paper are as follows:

– We present that a container sharing approach in workflows for avoiding
redundant container image downloading can lead to the makespan mini-
mization.

– We present a two-phase approach for effectively utilize both vCPUs and
containers for containerized task scheduling for workflows.

The remainder of this paper is organized as follows. Section 2 reviews
related studies on conventional containerized task allocation or scheduling al-
gorithms. Section 3 describes our assumed system and cost model. Section 4
introduces the proposed SF-CUV algorithm. Section 5 presents the experimen-
tal results. Finally, Section 6 concludes the paper.
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2 Related work

In this section, we provide an overview of conventional approaches from three
perspectives, i.e., containerized task allocation or scheduling algorithms for
a chain, a workflow, and non-containerized task scheduling algorithms for a
workflow.

2.1 Containerized task allocation algorithms for chain

A chain structured application is a simple form in a workflow. Since each task
has only one predecessor task or successor task, only one task is processed for
each time slot. Thus, once a task is allocated to a node, no scheduling policy
is needed. In particular, this form is used for service function chaining (SFC)
for both NFV and IoT applications. In conventional approaches for container-
ized task allocation algorithms for chain [5–17,19,20], several objectives can
be considered from the network optimization perspective. Literature [5,10,15,
19] presents how to allocate each task to a node by which each link cost is
optimized under the processing and communication capacity constraint. This
objective is useful if the economic cost for the communication among nodes
must be minimized. However, it does not lead to minimize the makespan and
does not effectively utilize both containers and nodes. As for approaches to
minimize the number of required containers or VMs [6,11,20], several contain-
ers can be shared tasks, but there is no guarantee to minimize the makespan.
The literature [6] proposes a meta-heuristic based on “Variable Neighborhood
Search” to minimize the number of VNF (Virtualized Network Function) in-
stances with satisfying network flow requirements and constraints. The liter-
ature [11] proposes a greedy algorithm for VNF allocation for minimizing the
number of VNF instances. The literature [20] proposes a VNF embedding algo-
rithm based on Binary Integer Programming (BIP) to optimize the embedding
cost and the number of VNF instances. The literature [7,8] presents methods
for accommodating multiple user requests. In particular, the literature [8], its
objective is to minimize both the total traffic volume in all the tasks and the
number of containers by distributing them over the network. However, since
it does not take the degree of parallelism, several independent tasks may be
processed on a node; thereby the throughput may be decreased owing to the
reduction in the degree of parallelism.

In other approaches, realistic objectives such as operating expenditure
(OPEX) and capital expenditure (CAPEX) optimization are considered [11,
13,14,16–18,20]. In the literature [11], the objective is to minimize the number
of containers by satisfying the flow rate constraint for each task. This objective
was formulated by mixed-ILP (MILP), and the greedy-based task allocation
algorithm is proposed. In the literature [13], the objective is to minimize the
makespan using a column generation approach while assuming an SFC as
only a chain structure. In the literature [14], a MILP-based optimization is
proposed for optimizing both the number of VMs and the task request flow.
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In the literature [16], the objective was to optimize the routing path among
tasks by utilizing the bandwidth for each allocated node and to minimize the
total consumed energy. In the literature [17], the objective is to find the opti-
mal mapping for minimizing the rejection rate for allocating a task to a node.
In the literature [20], the objective is to minimize the SFC embedding cost by
satisfying the constraints in terms of the capacity, deadline, and the maximum
number of allocated functions. If the deadline is imposed as a constraint, the
makespan is not always minimized.

As for approaches for scheduling each function in an SFC, fair-weighted
affinity-based scheduling (FWS) [9] algorithm attempts to select a task with
the minimum possible completion time from the ready tasks; then, the task is
allocated to the VM or the host with the maximum residual capacity. From
the resource utilization perspective, FWS tries to allocate as many VMs as
possible; therefore, it does not effectively utilize computational resources. Co-
ordVNF [10] tries to find the optimal allocation target by a breadth-first search
while considering the residual processing capacity for each node. Thus, it tries
to allocate a task to the nearest node from the previously allocated node, i.e.,
the criterion of CoordVNF is data locality. If an SFC is data-intensive, the
makespan can be effectively made smaller; otherwise, it tries to allocate a task
to a remote node with a large processing capacity. Thus, the computational
resources can be exhausted.

2.2 Contanerized and non-containerized task scheduling algorithms for
workflow

Many workflow scheduling algorithms have been proposed for scientific appli-
cations, image processing, and analyzing for realistic phenomenons. With the
recent spreading of container technologies, it is a natural strategy to handle a
task as a container even in a workflow.

As for containerized task scheduling algorithms for a workflow, there are
several approaches. In the literature [18], the objective is to minimize the to-
tal traffic flow cost and the execution cost in a workflow, not to minimize the
makespan. In the literature [22], a workflow is assumed and its objective is to
minimize the makespan and the task deployment time. Though the algorithm
in the literature [22] provides a good makespan, it does not consider resource
utilization such as the number of nodes. In the literature [23], a fair CPU shar-
ing method for each container in Montage workflow is proposed. Each CPU
computing power is allocated to each container in order to achieve fairness in
terms of the runtime, CPU usage, and the number of tasks among containers.
Though this method tries to optimize the response time for each container,
it does not include the communication optimization among containers. Thus,
the makespan is not always optimized in this method. The literature [24]
proposes a task scheduling algorithm to minimize the makespan by utilizing
bandwidth. In this method, the critical path that includes each container im-
age downloading time is derived. As a result, the communication in terms of



6 Hidehiro Kanemitsu et al.

container image downloading can be effectively suppressed by minimizing the
makespan. However, no policy for suppressing the number of computational
resources is included.

From the non-containerized task scheduling perspective, the primary ob-
jective of task scheduling is to minimize the makespan. Although list-based
task scheduling algorithms [34,36] and clustering-based task scheduling algo-
rithms [21,25–27] have been proposed for scheduling tasks in a heterogeneous
system, they cannot be applied directly for container utilization. In particular,
CMWSL [21] assumes the network where each node has only one processing
unit, and it attempts to cluster several tasks until a lower bound in terms of
the total workload is exceeded. Thus, if CMWSL is applied to a virtualized
system such as multiple VMs in a cloud, the lower bound can be a bottleneck
for makespan minimization. The reason is that the more VMs each node has,
the more edges among tasks can be already localized by allocating them to
such VMs; that is, imposing the lower bound for data localization degrade the
degree of parallelism in a cloud. Though SF-CUV uses the same measure as
CMWSL [21] in terms of the clustering metric, named as WSL presented in
Section 4.2.1, the following points are different among them.

– Task allocation policy: SF-CUV uses a task allocation criterion for mini-
mizing the makespan (defined at Eq. (16)) based on the actual mapping
state, while CMWSL tries to allocate with assuming a homogeneous sys-
tem that every task on the path dominating the WSL is supposed to be
allocated to the specific node. Thus, CMWSL cannot derive the scheduling
priority based on the actual mapping, while SF-CUV can.

– Task cluster size adjustment: In SF-CUV, each task cluster size, i.e., the
sum of task workload in a task cluster, is determined based on the actual
task clustering state. However, in CMWSL, the lower bound for the task
cluster size is initially derived by assuming a homogeneous system. As
a result, the degree of parallelism or the communication localization by
the clustering steps in CMWSL may not be appropriate to minimize the
makespan when each processing speed or each communication bandwidth
for each node is varied widely.

In other clustering-based task scheduling algorithms in a cloud [25], it clus-
ters tasks according to conditional probability in terms of the occurrence. Such
a method is useful when the given workflow includes if/else edges. However,
it cannot be applied directly to a workflow in which every task must be pro-
cessed. The task clustering algorithm called ECOS [26] attempts to minimize
the cost within the deadline constraint by vertical and horizontal clustering
on a cloud. In vertical clustering, each sequential task is clustered to localize
the communication among tasks, while parallel tasks are clustered to minimize
the cost within the deadline. The factor for makespan minimization in ECOS
is only data localization in sequential tasks. The task clustering algorithm in
the literature [27] partitions into K task clusters, and in each task cluster with
considering data locality and parallelism. Then in each task cluster, list-based
scheduling is applied. Since the assumed environment is a homogeneous sys-
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Table 1 Notations for SF-CUV algorithm

Notation Explanation Definition
ni ∈ N i-th node having VMs in the set of nodes N .
ci,j ∈ Ci j-th CPU core in ni.
ci,j,k ∈ Cvcpu k-th vCPU in CPU core ci,j

Mi ∈M Set of VMs in ni.
mi,j ∈Mi j-th VM in Mi.
ϕ : M 7→ Cvcpu Set of vCPUs in the VM.
S = (V, E) Workflow
vi ∈ V task
wi Workload of vi

ei,j ∈ E Data dependency from vi to vj

di,j Data size from vi to vj

pred(vi) Set of predecessor tasks of vi

suc(vi) Set of successor tasks of vi

D(vi) Container image size that includes vi

TDL(D(vi), mk,l) Container downloading time on mk,l (1)
Tp(vi, ck,l,m) Exec. time of vi on ck,l,m

Tc(di,j , Lk,p) Commun. time of di,j from mk,l to mp,q (2)
U(ck,l,m, vi) vCPU usage rate (0 – 100 %)
Uth(ck,l) Maximum allowed usage rate in a core (0 – 100 %)
Tdr(vj) Data ready time of vj (5)
Ts(vj , A(vj)) Start time of vj on A(vj) (6)
Tf (vi, A(vi)) Finish time of vj on A(vj) (7)
WSL(cls(i)) TL(cls(i)) + BL(cls(i)) (8)
top(i) Set of tasks that begin execution first in cls(i)
in(i) Set of tasks in cls(i) with incoming edges from other clusters
out(i) Set of tasks sending data to other clusters
desc(vk, cls(i)) Set of descendant tasks of vk in cls(h), including vk itself
TL(cls(i)) Latest start time in top(i) (9)
tlevel(vk) Latest start time of vk (10)
BL(cls(i)) Longest remaining time of out(i) (12)
blevel(vk) Longest remaining time of vk (13)

tem, it cannot be applied directly to a virtualized environment where each
VM has various processing speeds and each node has different communication
bandwidth.

2.3 Difference with conventional approaches

Though SF-CUV algorithm tries to minimize the makespan by utilizing both
vCPUs and containers by clustering tasks and sharing containers among tasks,
any one of above cited approaches do not have specific criteria to satisfy both
conditions, i.e., vCPU and container utilization. If a conventional container-
ized task scheduling algorithm is applied for multiple workflows, more vCPUs
must wait for exections than the case of SF-CUV. If a non-containerized task
scheduling algorithm is applied for scheduling containerized tasks, more con-
tainers must be downloaded for tasks than the case of SF-CUV.

3 System model

In this section, we define the parameters of the system, network, workflow,
and the cost model. Note that all notations are listed on Table 1.
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3.1 Network model

We assume that a network contains heterogeneous computational resources,
including one or more cloud computing nodes with virtual machines (VMs)
to process data from IoT devices, such as cameras and sensors. In Fig. 1, we
assume that there are one or more networks including a container repository
having container images, and several nodes having multiple VMs. Each VM
has one or more virtual CPUs (vCPUs), each of which is mapped to one logical
CPU (LCPU). From this state, each vCPU is an allocation target for tasks in
workflows.

From logical points of view, let N = {n1, n2, . . . } be the set of nodes
with multiple VMs. The CPU in ni is denoted as Ci = {ci,1, ci,2, . . . }, where
ci,k is the k-th CPU core in Ci and ni ∈ N . Let the set of VMs in ni be
Mi = {mi,1,mi,2. . . . }. The processing speed (i.e., clock frequency) and com-
munication bandwidth of ci,j are αi,j and βi,j , respectively. For each CPU core
ck,l ∈ nk, we assume that ck,l has one or more vCPUs (where one vCPU cor-
responds to one logical CPU). Since each VM processes tasks on vCPUs, the
allocation target for each task should be each vCPU. Each vCPU is denoted
as ck,l,m. Here, 1 ≤ m ≤ 2 because of hyper-threading [30], which transforms
one CPU core into two vCPUs. The set of vCPUs is defined as Cvcpu. Though
the mapping between each CPU core and each vCPU is typically controlled
by a hypervisor, we can define the actual mapping by CPU pinning [31]. Thus,
we assume that the mapping can be known before scheduling tasks.

3.2 Workflow and task

We assume that workflow can be expressed in such a general form, i.e., DAG.
We assume that there is at least one workflow to be deployed over the network.
A workflow is defined as a graph S = (V,E), where V is a set of tasks and E
is a set of directed edges that show the data dependencies between the tasks.
The i-th task is vi ∈ V , and data transmission from vi to vj is denoted as
ei,j ∈ E. Further, wi is the workload of vi and di,j is the data size of ei,j . In a
workflow, a task cannot begin execution until all the data from its preceding
tasks arrive. Let pred(vi) and suc(vi) be the sets of predecessors and successors
of vi, respectively. If pred(vi) = ∅, then vi is called the START task, and if
suc(vi) = ∅, then vi is called the END task.

3.3 Cost model

In this section, we define the cost for the execution time for each task and the
communication time among tasks. In general, flow-level and instruction-level
analyses are necessary to accurately estimate the execution time of unknown
tasks. For known tasks, i.e., estimating the current execution time for already
allocated tasks, empirical or regression-based analysis can be applied [28,29].
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Fig. 1 Highlight of SF-CUV algorithm.

For complex workflows having many types of tasks and dependencies, an accu-
rate estimation for both the task execution time and the communication time
can be achieved to some extent by accumulating each analysis result. In this
paper, we assume the situation that the execution time and the communica-
tion time for each task to be scheduled can be estimated from past execution
results and input data. Let wi be the workload of vi. The size of the data
that must be sent from vi to vj is denoted as di,j . Here, we assume that vi

belongs to a container and its image size is D(vi). Each container is supposed
to run on a VM. Then the container image downloading time at the VM mk,l

is defined by TDL(D(vi),mk,l) as follows:

TDL(D(vi),mk,l) =

{
0, if mk,l has the container.
D(vi)

βk
, otherwise.

(1)

The processing time of vi on ck,l,m is defined as Tp(vi, ck,l,m) = wi

αk,l,m
, and the

communication time of di,j from mk,l to mp,q is defined as

Tc(di,j , Lk,p) = Ok +
di,j

min {βk, βp}
= Ok +

di,j

Lk,p
, (2)

where Ok is the setup time for the data transmission, and it is negligible
compared to the actual communication time. Thus, Ok is supposed to be zero
for any node in N . Further, βk is the communication bandwidth specified
by the NIC of nk, i.e., the maximum bandwidth. If the data are transmitted
between vCPUs that belong to the same host machine, we assume that the
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communication time is negligible (equal to zero) compared to the network
delay. If the objective of task allocation is to optimize CAPEX or OPEX,
each vCPU has a threshold of the total processed workload that should not be
exceeded in task allocation. As such a threshold can typically be specified by
a user or some system management policies, the set of allocated tasks for each
vCPU can be changed. Thus, the makespan can be varied depending on these
policies. The computational load of a task, i.e., how long the process started
by the task occupies the CPU per time unit depends on the structure of the
task, operating system, and the hypervisor. In this paper, we assume that
each task is processed without preemption by a vCPU per time unit to fully
utilize each CPU capacity. Typically, the mapping between each vCPU and
each logical CPU depends on the hypervisor on the cloud. However, depending
on the mapping policy of the hypervisor, one logical CPU can be mapped to
two or more vCPUs. In such a case, the economic cost regarding the number of
vCPUs can be suppressed at the expense of the processing speed. Each vCPU
can be fully utilized in a system such as an on-premise cloud, the processing
speed for each vCPU should not be degraded if the total number of used
vCPUs is less than that of logical CPUs. An application with a high degree
of parallelism requires many vCPUs without degrading the performance to
minimize the makespan. Thus, manually mapping between vCPUs and logical
CPUs is needed such as CPU pinning. In this paper, an on-premise cloud
is assumed and every allocated task is not preempted by other tasks at a
time unit to finish its execution as early as possible. In the case of a high-
load vCPU, the throughput is degraded. Thus, the threshold in terms of the
processing load for each vCPU should be determined to avoid degrading its
processing speed. We define the threshold of the processing load (60%, 80%,
and so on). Let U(ck,l,m, vi) be the vCPU usage rate when vi is executed by
ck,l,m. Further, |ck,l| is the number of logical CPUs per CPU core ck,l, e.g.,
|ck,l| = 2 implies that hyper-threading is enabled in core ck,l. If one logical
CPU corresponds to one vCPU, two vCPUs run simultaneously for |ck,l| = 2.
As a capacity constraint in terms of parallel execution by vCPUs, we define
the condition that vCPUs in a CPU core can simultaneously execute tasks
without degrading their processing speed as follows:

1
|ck,l|

|ck,l|∑
m=1

U(ck,l,m, vi) ≤ Uth(ck,l), (3)

where Uth(ck,l) is the maximum usage ratio in core ck,l as determined by the
system administrator. Eq. (3) indicates that the average usage of a vCPU must
not exceed the maximum usage ratio in a core for parallel execution.

3.4 Objective function

We define that the allocation target of vi determined by a scheduling algorithm
is A(vi), where A(vi) is a vCPU. Here, we present the process of determining
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the start time of each task vi on A(vi) when scheduling tasks and deriving
the scheduled length. If Ts(vi, A(vi)) is the start time, Tp(vi, A(vi)) is the
processing time, and Tf (vi, A(vi)) is the finish time of vi on A(vi), then

Tf (vi, A(vi)) = Ts(vi, A(vi)) + TDL(vi, ϕ
−1(A(vi))) + Tp(vi, A(vi)), (4)

where A(vi) ∈M ∪ Cvcpu and ϕ−1(A(vi)) is the VM that A(vi) belongs to.
(4) means that the container downloading is required even if every data has
arrived at vi. The set of free tasks (i.e., the set of tasks whose predecessors have
been scheduled) is denoted as fList. For each task in fList, the data-ready
time (DRT) can be derived. The DRT is the latest time of data arrival from
all preceding tasks. Notably, the DRT is the earliest start time for each task;
however, the actual start time may be later than the DRT. This is because
vj cannot start execution when an unfinished task vh /∈ pred(vj) such that
A(vh) = A(vj) is scheduled before vj . The DRT of vj at mk is defined as
follows:

Tdr(vj) = max
vi∈pred(vj)

{Tf (vi, A(vi)) + Tc(di,j , Lk,p)} , (5)

where Tc(di,j , Lk,p) = 0 if k = p; A(vi) ∈ nk and A(vj) ∈ np. Then, we can
calculate the start time Ts(vj , A(vj)) using the DRT:

Ts(vj , A(vj)) = max

 max
vi /∈pred(vj),
A(vi)=A(vj)

{Tf (vi, A(vi))} , Tdr(vj)

 . (6)

The makespan is the finish time of the END task and is defined as follows:

Tf (vend, A(vend)) = Ts(vend, A(vend)) + Tp(vend, A(vend)). (7)

With the aforementioned definitions, the objective function is defined as fol-
lows:

Objective 1 Minimize Tf (vend, A(vend)) by utilizing both vCPUs and con-
tainers with satisfying Eq. (3).

4 SF-CUV algorithm

In this section, we present the SF-CUV algorithm. First, we present an overview
of SF-CUV, and then we provide a detailed explanation of the algorithm with
examples.
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4.1 Overview of SF-CUV

As shown in Fig. 1, SF-CUV consists of two phases. In the first phase, the task
clustering and pre-vCPU allocation are performed to suppress the number
of allocated vCPUs and minimize the makespan. In the second phase, task
ordering and actual task reallocation are performed to suppress the number
of containers and minimize the makespan by container sharing.

Algorithm 1 presents the whole procedure of the SF-CUV algorithm. Lines
1–22 in Algorithm 1 correspond to phase (i) and lines 23–28 in Algorithm 1
correspond to phase (ii). A detailed description for each phase is given in the
sections that follow.

4.2 Task clustering and pre-vCPU allocation phase

4.2.1 Clustering metric: WSL

In this phase, we assume that each task belongs to a “single task cluster”
with only one task. Then, several task clusters are merged into a larger task
cluster to minimize the possible makespan. The i-th task cluster is denoted as
cls(i), where the initial task cluster is denoted as cls(i) = {vi}. We define the
operation of “clustering cls(i) and cls(j) together” is the merging, that is as
denoted as cls(i)← cls(i) ∪ cls(j). If a task in cls(i) is an immediate prede-
cessor of a task in cls(j), that communication is localized by the clustering.
Since such a data localization is one of factors to minimize the makespan, a
clustering step in this paper assumes at least one data transfer is required
between cls(i) and cls(j). Thus, clustering from cls(i) to cls(j) as “downward
clustering (presented in Section 4.2.3)” and vice versa as “upward clustering
(presented in Section 4.2.4)” are possible. Notably, the makespan cannot be
determined until both the allocation target and the execution order for each
task have been determined. Thus, a measure for estimating the makespan is
used in this phase, which is called the worst schedule length (WSL) [21]. The
WSL is the maximum execution path length when each task is executed as
late as possible, provided that there is no data-waiting time from other task
clusters. Moreover, it has been shown that minimizing the WSL can minimize
both the upper and the lower bounds of the makespan [21].

The main objective of this phase is to minimize WSL by suppressing the
number of vCPUs through task clustering steps.

Here, we highlight the WSL derivation2 and the list of notation used in
the following sections is given in Table 1. WSL of cls(i) is defined as

WSL(cls(i)) = TL(cls(i)) + BL(cls(i)), (8)

where TL(cls(i)) is the latest data arrival time in the tasks that can execute
first in cls(i), and BL(cls(i)) is the longest “execution path” length in cls(i)

2 Fore more details for WSL derivation, refer to the literature [21].
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plus the longest remained path length until the END task finishes. That is,
WSL is made larger if more tasks each of which is independent of each other
are included in the same task cluster. Here WSL(cls(i)) consists of the “upper
part: TL(cls(i))” and “lower part: BL(cls(i))” of cls(i). First, we define the
upper part, i.e., TL(cls(i)), as

TL(cls(i)) = max
vk∈top(i)

{tlevel(vk)} , (9)

where top(i) is the set of tasks that begin execution first in cls(i). Next, we
define a metric for the possible start time for each task in a cluster. Let in(i)
be the set of tasks with incoming edges from other task clusters, and let
out(i) be the set of tasks with outgoing edges to other task clusters. For each
vk ∈ top(i), vj ∈ pred(vk), vj ∈ out(h), we define

tlevel(vk) = max
vj∈pred(vk),

vj∈out(cls(h))

{tlevel(vj) + Tp(vj , A(h)) + Tc(dj,k, Lp,q)} , (10)

tlevel(vj) = TL(cls(h)) + Tp(cls(h), A(j))− Tp(desc(vj , cls(h)), A(h))),
(11)

where we assume that vj ∈ cls(h), vk ∈ cls(i), and A(h) is the vCPU to which
cls(h) is allocated. In Eqs. (10) and (11), we assume that A(h) ∈ np, A(i) ∈ nq, A(j) ∈ nr

and desc(vj , cls(h)) is the set of descendant tasks of vj in cls(h), including vj

itself. For instance, if A, B, C, and D are included in an task cluster cls(h) and
we assume that A→B, A→C, B→D, and C→D, where “→” is a precedence re-
lationship, then desc(B, cls(h)) = {B, D} and desc(A, cls(h)) = {A,B,C, D}.
Finally, tlevel(vj) from Eq. (11) is the latest possible start time of vj , pro-
vided that vj is scheduled as late as possible when every task in in(j) can
begin execution without waiting for data arrival.

Next, we define the “lower part: BL(cls(i))” as

BL(cls(i)) = max
vk∈out(i)

{Tp(cls(i), A(i)))− Tp(desc(vk, cls(i)), A(i)) + blevel(vk)} ,

(12)

blevel(vk) = max
vl∈in(j),

vl∈suc(vk)

{Tp(vk, A(i)) + Tc(dk,l, Lq,r) + blevel(vl)} , (13)

where we assume that vk ∈ cls(i), vl ∈ cls(h), and A(i) ∈ nq, A(j) ∈ nr. Here
BL(cls(i)) is the maximum possible residual time duration of the tasks in
cls(i), provided that each task can be scheduled as late as possible. Thus, the
first and second terms in Eq. (12) imply the possible start time of a task in
cls(i) if it is scheduled as late as possible. Under such an assumption, blevel(vk)
is the longest path length from vk to the END task. Then WSL(cls(i)) is
determined after each task is allocated (but before scheduling the tasks).
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Example 1 Fig. 2 shows an example of WSL derivation. In this figure, the
shown graph is a DAG structured workflow where each edge defines the prece-
dence relationship among tasks. Fig. 2(a) is the given workflow and (b) is the
input workflow in which each task belongs to a respective single task cluster,
and (c) is the status after two task clusters are generated. Fig. 2(d) and (e) are
the paths of WSL for each task cluster, respectively. The cost value on every
edge and task is the communication time and the processing time, respectively.
For simplicity, in Fig. 2(c), we assume that cls(1) and cls(2) are allocated to
different nodes distributed physically over the network. We assume that those
nodes have the same processing speed and communication bandwidth equal to
one, i.e., every cost value is not varied when each task is allocated to a node.

In Fig. 2(c), cls(1) has only one top task, i.e., v1 because it is the START
task. As for in(1), because v7 and v10 have incoming edges from cls(2), they
belong to in(1). As for out(1), v1 has one outgoing edge to cls(2) and v10 is
the END task. Here desc(v1, cls(1)) is the set of descendant tasks of v1 in
cls(1), i.e., v1, v3, v4, v7, v8, v10 belong to it. Thus, TL(cls(1)) and BL(cls(1))
are derived using the above sets, and WSL(cls(1)) is derived as 35. Similarly,
we can derive WSL(cls(2)) as 37.

In Fig. 2(d), the red arrow is the path of WSL(cls(1)). Since BL(cls(1))
is derived from only the set of out(cls(1)) = {v1, v10}, WSL is derived by tak-
ing the largest one from tlevel(v1) + blevel(v1) and tlevel(v10) + blevel(v10).
Their values are 0 + 35 and 13 + 2, thus we have WSL(cls(1)) = 35. Sim-
ilarly, in Fig. 2(e), WSL(cls(2)) is derived by taking the largest one from
tlevel(v6) + blevel(v6) = 8 + 29 and tlevel(v9) + blevel(v9) = 8 + 29 because we
have out(cls(2)) = {v6, v9}. 2

In the following sections, we describe details first step of the SF-CUV
algorithm using WSL.

4.2.2 Summary of clustering in SF-CUV

First, we assume that every task cluster has only one task and each task cluster
belongs to UEX, i.e., the set of unchecked task clusters (line 1 in Algorithm 1).
task clusters are checked to see whether they satisfy the clustering condition,
then are removed from UEX (lines 7 and 11 in Algorithm 1), and the algorithm
finishes when UEX = ∅.

In line 3 in Algorithm 1, SF-CUV attempts to select the task cluster as the
“pivot” with the maximum WSL by Eq. (8) from the task cluster list FREE
(line 3 in Algorithm 1). Here FREE is the set of task clusters that are ready for
the clustering procedures. The condition that a cluster cls(i) belongs to FREE
is that all the predecessors of top(cls(i)) do not belong to UEX (defined
in Eq. (17)). That is, all predecessor tasks of top(cls(i)) have been checked.
From the pivot, the succeeding or preceding task cluster is selected as the
clustering target. Clustering from pivot to a succeeding task cluster is defined
as “downward clustering” (lines 5–8 in Algorithm 1), whereas clustering from
pivot to a preceding task cluster is defined as “upward clustering” (lines 9–12
in Algorithm 1).
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Algorithm 1: SF-CUV algorithm
Input: Set of vCPUs Cvcpu and workflow S = (V, E), and set of task clusters CLS = V .
Output: The mapping from cls(i) ∈ CLS to Cvcpu and the schedule.
/* UEX is the set of unclustered task clusters and FREE is the set of task
clusters that are ready for clustering. */

1 UEX ← CLS, FREE ← START task clusters
2 while (UEX ̸= ∅) OR (♯ of cls(i) ≥ 1 s.t., A(cls(i)) = ∅) do
3 Select cls(i) having the maximum WSL in FREE using the average processing

speed αave and the average communication bandwidth βave

4 pivot← cls(i).
/* Suppose that vt ∈ top(pivot) dominates TL(pivot) and vb ∈ out(pivot)
dominates BL(pivot). */
/* Suppose that vc ∈ suc(vb) dominates blevel(vb) where vc ∈ cls(j), and
vs ∈ pred(vt) dominates tlevel(vt), where vs ∈ cls(h). */

5 if (14) is satisfied with pivot and cls(j) then
6 target← cls(j)

/* Downward clustering. */
7 UEX ← UEX − {pivot, target}.
8 pivot← pivot ∪ target.

9 else if (15) is satisfied with pivot and cls(h) then
10 target← cls(h)

/* Upward clustering. */
11 UEX ← UEX − {target ∪ pivot}.
12 pivot← target ∪ pivot.

13 else
/* */

14 if A(pivot) = ∅ then
15 Select cq,l,m ∈ Cvcpu satisfying (16) and allocate cq,l,m to pivot.

16 else
/* Update FREE if one or more succeeding task clusters satisfy (17).
*/

17 if (♯ of cls(j)) ≥ 1 at (17) by tracing successors of out(pivot) then
18 FREE ← FREE − {pivot}.
19 Put each task cluster cls(j) into FREE.

20 else
/* Search for the next pivot candidate that does not effect the
maximum WSL among FREE by the clustering step. */

21 pivot← cls(x) ∈ FREE having the next largest WSL value s.t.,
A(cls(x)) = ∅, then go to line 5 or 9 or 13. If no such task cluster
cls(x) is found, remove pivot from FREE.

/* Update Process. */
22 pivot← Update(pivot).

/* task ordering and actual allocation. */
/* fList is the set of tasks whose all predecessor tasks have been scheduled, i.e.,
not included in UEXtask. */

23 Let UEXtask ← V , fList← START tasks.
24 while UEXtask ̸= ∅ do
25 Select the task vi satisfying (18) from fList.

/* Find the vCPU as the allocation target by considering minimization of
Tf (vi, A(vi)) while satisfying (3) and container sharing. */
/* Call Algorithm 2. */

26 A(vi)← RefinedAllocation(vi)
27 fList← fList− {vi}, UEXtask ← UEXtask − {vi}, and add tasks vj ∈ suc(vi) to

fList s.t., ∀vl ∈ pred(vj), vl /∈ UEXtask.

28 return V and Cvcpu.
29 Function Update(cls(i)):
30 Update top(i), in(i), out(i).

/* Update WSL of the pivot and the successor clusters in FREE. */
31 Update TL(i) and BL(i).
32 Update TL(j) by tracing ∀vb ∈ out(i) and ∀vc s.t.,

vc ∈ suc(vb), vc ∈ cls(j), cls(j) ∈ FREE.
33 return cls(i).
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cls(i')
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 line 3 in Algorithm 1.

(b) Downward clustering at lines 5-8 

in Algorithm 1.(let  cls(i) as cls(i'))

BL(i')

1. If (14) is satisfied at (a), 

go to (b).

(Line 5 in Algorithm 1)

cls(h)

cls(j) blevel(vb)

TL(h)

BL(h)

(c) Upward clustering at lines 

9-12 in Algorithm 1.

3. If (15) is satisfied at (a), 

go to (c). 

(Line 9 in Algorithm 1)

 

2. Otherwise, i.e.,  (14) is 

not satisfied, try to do 

upward clustering. 

 

4. Otherwise, try to select  

     the vCPU  that satisfies 

     (16) for "cls(i) at (a)".  

(Line 14 in Algorithm 1)

Fig. 3 Clustering criteria at (14) and (15).

4.2.3 Downward clustering

In line 5 in Algorithm 1, the condition for downward clustering from the pivot
(cls(i)) to cls(j) is accepted is that WSL is made smaller, that is defined as
follows:

WSL(cls(i) ∪ cls(j)) = TL(cls(i)) + Tp(cls(i) ∪ cls(j), αave)−
desc(vc, cls(i) ∪ cls(j), αave) + blevel(vc) ≤WSL(cls(i)), (14)

where we assume that vb ∈ out(i) dominates BL(i), vc ∈ suc(vb) dominates
blevel(vb), and vc ∈ cls(j). Fig. 3 shows how cls(i) is checked for the clustering
step. Fig. 3(a) shows that cls(i) is selected in line 3 in Algorithm 1, Fig. 3(b)
is the result of a downward clustering where cls(i) is clustered with cls(j) in
Fig. 3(a). Then the generated cluster is denoted as cls(i′) in Fig. 3(b). Fig. 3(c)
is the result of an upward clustering where cls(h) is clustered with cls(i) in
Fig. 3(a). If (14) is satisfied in Fig. 3(a), the process goes to Fig. 3(b).
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Fig. 4 vCPU selection for cls(i) at (16), where it is assumed that cq,l,m at (16) is cq,1,1.

4.2.4 Upward clustering

If downward clustering is not accepted, i.e., (14) is not satisfied, the algorithm
attempts to perform upward clustering (Fig. 3(c)). In line 9 in Algorithm 1,
the condition for upward clustering is accepted is that WSL is made smaller,
that is defined as follows:

WSL(cls(h) ∪ cls(i)) = TL(cls(h)) + Tp(cls(h) ∪ cls(i), αave)−
desc(vb, cls(h) ∪ cls(i), αave) + blevel(vb) ≤WSL(cls(i)), (15)

where cls(i) is the pivot and we assume that vt ∈ top(i) dominates TL(cls(i)),
vs ∈ pred(vt), vs ∈ cls(h) dominates tlevel(vt), and vb dominates BL(i), as
described in Fig. 3(a). From this state, if (15) is satisfied in Fig. 3(a), the
process goes to Fig. 3(c). This corresponds to the upward clustering in Fig. 3(c)
being accepted if (15) is satisfied. If either condition (Eq. (14) or Eq. (15)) is
satisfied, both clusters are removed from UEX.

4.2.5 vCPU allocation

Assuming that both Eqs. (14) and (15) are not satisfied in lines 13–21 in
Algorithm 1, if no vCPU has been allocated to the pivot (line 14), the vCPU
satisfying the following condition is selected for allocating to the pivot (let the
pivot be cls(i)):

cq,l,m ∈ Cvpu s.t.

min
cq,l,m∈ unallocated vCPUs

{Tc(ds,t, Lp,q) + Tp(cls(i), cq,l,m) + Tc(db,c, βq)} ,(16)
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where vs ∈ cls(h) dominates tlevel(vt) and vt ∈ top(i) dominates TL(cls(i)).
Moreover, vb ∈ cls(i) dominates BL(cls(i)) and vc dominates blevel(vb), where
vc ∈ cls(j) (see Fig. 4). Eq. (16) implies that SF-CUV tries to find the vCPU
by which the time duration from the incoming communication start time to the
outgoing communication finish time is minimized. Fig. 4 shows one example
of the vCPU selection criteria at (16), where notation in this figure corre-
sponds to that in (16). In Fig. 4, it is assumed that A(cls(h)) = cp,1,1 ∈ np,
and cq,1,1 is selected at (16), which corresponds to line 15 in Algorithm 1. We
assume that Tc(ds,t, Lp,q) + Tp(cls(i), cq,1,1) + Tc(db,c, βq) is minimum in the
set of unallocated vCPUs. If p = q, the communication of ds,t is localized, we
have Tc(ds,t, Lp,q) = 0. However, whether the communication time for db,c is
zero or not cannot be determined because the allocation target vCPU of task
cluster cls(j) in Fig. 4 has not been determined until A(cls(j)) ̸= ∅. Thus, the
communication time for db,c is Tc(db,c, βq) by taking the bottleneck bandwidth
as βq. If both the processing speed and the communication bandwidth among
np and nq are the same, the allocation target for cls(i) is selected from vCPUs
in np for communication localization, though it is selected from nq in Fig. 4.

4.2.6 Update procedures

After the allocation target vCPU has been determined for cls(i), the WSL
of cls(i) is updated with the allocated vCPU (line 22 in Algorithm 1). This
update procedure includes the update of in(cls(i)), out(cls(i)), top(cls(i)),
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TL(cls(i)), and BL(cls(i)) to derive the new WSL(cls(i)) for the next pivot
selection in line 3 of Algorithm 1. If a vCPU has been allocated to the pivot
(line 15), the pivot still belongs to FREE for further clustering steps, to
suppress the number of required vCPUs and to minimize the makespan. This
corresponds to line 15 → 22 → 3 in Algorithm 1.

In line 3 of Algorithm 1, if the selected pivot has already been allocated
to a vCPU and both the conditions for downward clustering and upward clus-
tering are not satisfied, then the process goes to line 17 in Algorithm 1. This
means that the process attempts to search for the new pivot candidates from
succeeding task clusters of the pivot. The new task cluster (cls(j)) satisfying
the following condition is put into FREE:

{cls(j)|∀vt ∈ top(j), vs ∈ pred(vt), vs ∈ cls(i)
s.t. A(cls(i)) ̸= ∅} . (17)

In cls(j), all the predecessor tasks of top(j) are assumed to belong to traced
task clusters. If such an task cluster cls(j) exists, it is put into FREE and the
current pivot is removed from FREE (line 17 in Algorithm 1). If no such task
cluster exists, the current pivot still belongs to FREE because the pivot can
be selected and clustered depending on the subsequent clustering steps (line
20 in Algorithm 1). Then an task cluster having the next largest WSL value
is selected as pivot (line 21 in Algorithm 1).

Example 2 Fig. 5 shows an example of the update procedures in lines 29–
33 in Algorithm 1. In 1 in this figure, cls(h) is assumed to be allocated to a
vCPU satisfying (16), then we assume that cls(h) is selected as the pivot in
a subsequent loop. However, we assume that cls(j) does not satisfy both (14)
and (15) and in 2 it is removed from FREE in line 18 of Algorithm 1. In
3 in Fig. 5, cls(i) is put into FREE, then we assume that WSL of cls(i)
is maximized in FREE. Thus, cls(i) is selected as pivot for the clustering
step. In 5 in Fig. 5, i.e., after several clustering steps, we assume that cls(i) is
allocated to a vCPU and cls(i) still belongs to FREE (lines 14–16 in Algorithm
1) . In 7, cls(e) and cls(j) are put into FREE. However, we assume that cls(d)
still belongs to UEX because cls(x) is assumed to belong to UEX or FREE.
Then in 8 in Fig. 5, both TL(e) and TL(j) are updated; that is, their WSL
values are updated for further pivot selection from FREE. As parts in cls(e)
and cls(j) affected by 5 in Fig. 5 are TL(e) and TL(j), only (i.e., BL values
are not affected), and only TL values of task clusters in FREE are updated.
2

In the next example, we present the whole procedures in the task clustering
and pre-vCPU allocation phase.

Example 3 Fig. 6 shows an example of whole procedures in the task clustering
and pre-vCPU allocation phase of the SF-CUV algorithm. In this figure, the
bold arrows indicate the execution path determining the maximum WSL among
task clusters. From the initial state (a), each cost value is allocated according to
the average processing speed ((4+1+2+5)/4 = 3) and the average bandwidth
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Fig. 6 Example of the clustering phase.

((3 + 1)/2 = 2) from the “System spec.” table. Each red- colored cost value is
that updated from the previous clustering step by Update procedures in line 29
of Algorithm 1. The table located at the bottom in this figure indicates the state
of FREE, how pivot is selected, and whether the clustering step is accepted.

In Fig. 6(a), cls(A) and cls(B) belong to FREE. Then cls(A) is selected
as pivot, because in line 3 of Algorithm 1, we have

WSL(cls(A)) = 22 > WSL(cls(B)) = 20.

Then, cls(C) is selected as the target because C dominates blevel(A) and (14)
in this case is 0 + (2 + 3)− 3 + blevel(C) = 2 + 17 = 19 < WSL(cls(A)) = 22.
Fig. 6(b) is the resultant state from the first clustering step in (a), where
cls(A) and cls(C) are merged into the new cluster, i.e., cls(A) (line 8 of Al-
gorithm 1). In Fig. 6(b), the update process is performed as top(A) = {A}
and out(A) = {A,C} by Update procedures in line 22. Then WSL(cls(A)) is
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made smaller from 22 to 19. As TL(B) is not affected by the clustering in (a),
TL(B) does not vary.

In Fig. 6(b), cls(B) is selected as pivot from FREE in step 2. Here D
dominates blevel(B), and (14) is satisfied by cls(D), cls(B), and cls(D) are
clustered. In line 8, cls(D) are clustered, thus (WSL(cls(B)) is made smaller
from 20 to 13 in Fig. 6(c). Then cls(A) and cls(E) are clustered in step 3, the
result is shown in Fig. 6(d).

In Fig. 6(d), i.e., at step 4, pivot is cls(A) and cls(B) is selected as the tar-
get because WSL(cls(A)) = 19, that is larger than WSL(cls(B)) = 13 (lines
3 and 4 in Algorithm 1). However, the condition in (14) is not satisfied, i.e.,
0 + (2 + 3 + 6 + 1 + 1− 1) + blevel(D) = 12 + 12 = 24 > WSL(cls(A)) = 19.
Thus, the process goes to line 9, i.e., whether the condition in (15) is satisfied
is checked. As top(A) = {A} and A has no predecessor task, upward clustering
is rejected and the process goes to line 14. In A(cls(i)) = ∅ and in line 15, the
vCPU c1,1,1 is selected for (16). Then the resultant state is shown in Fig. 6(e),
where cls(A) is still selected as pivot at step 5, but the process goes to line 13
→ 16 → 20 because A(cls(A)) ̸= ∅ in step 5. As cls(B) has the next largest
WSL in FREE, it is selected as pivot for step 6. Then, cls(B) and cls(F ) are
clustered and the resultant state is shown in Fig. 6(f).

In Fig. 6(f), i.e., at step 7, cls(A) is selected as pivot and cls(A) and cls(G)
are clustered, whose result is shown in (g).

At (g), the maximum WSL path is A→C→F→G, and cls(A) is selected
as pivot. However, (15) is not satisfied and A has no predecessor task with
A(cls(A)) ̸= ∅. Thus, the process goes to line 21 and then cls(B) is selected as
pivot. As cls(B) does not satisfy both (14) and (15), the process goes to line
15, and we have A(cls(B)) = c1,1,2 for (16). As every task cluster is allocated
to a vCPU, the process break the loop at line 2. 2

4.3 Task ordering and actual vCPU allocation phase

In this phase, each task is scheduled by considering the makespan, the number
of containers, and number of allocated vCPUs by satisfying Eq. (3). Notably, in
line 23 of Algorithm 1, each task has been allocated to a vCPU. In this phase,
it can be moved to another vCPU to minimize the makespan by reducing
both the number of containers and vCPUs. Because each task is allocated to a
vCPU by task clustering and pre-vCPU allocation in the previous section, the
scheduling priority is based on actual vCPU allocation and not on the average
performance as in conventional task scheduling algorithms [34,36]. As can be
seen in line 23 of Algorithm 1, we define UEXtask and fList for this second
phase. This phase corresponds to lines 23–28 in Algorithm 1.

In line 25 of Algorithm 1, the task vi ∈ fList that satisfies the following
condition is selected from fList:

tlevel(vi) + blevel(vi) = max
vk∈fList

{tlevel(vk) + blevel(vk)} . (18)
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Algorithm 2: RefinedAllocation algorithm
Input: vi ∈ V .
Output: The allocated vCPU, i.e., A(vi).

1 Let Ψ(vi) = {vj |vj belongs to the same container as vi.}.
/* From the set of already allocated tasks, find the subset Ψ(vi) that belong to
the same container as vi (i.e., the same executable module). */

2 if Ψ(vi) ̸= ∅ then
/* Find the set of vCPUs, where they have tasks that belong to the same
container as vi. */

3 Cvcpu(vi)← the set of vCPUs to which ∃vj ∈ Ψ(vi) is allocated.
/* Allocate vi to an idle time slot of a vCPU by insertion policy. Note that no
container download is required and TDL(vi, mp,q) = 0. */

4 A(vi)← ck,l,m ∈ Cvcpu(vi) s.t., (3) is satisfied and
Tf (vi, ck,l,m) = min

cp,q,r∈Cvcpu(vi)
{Ts(vi, cp,q,r) + Tp(vi, cp,q,r)}.

5 else
/* If no same-type tasks have been allocated in this phase, it tries to find
the vCPU by which the finish time of vi is minimized by insertion policy. */

6 A(vi)← ck,l,m ∈ Cvcpu s.t., (3) is satisfied and
Tf (vi, ck,l,m) = min

cp,q,r∈Cvcpu
{Ts(vi, cp,q,r) + TDL(vi, mp,q) + Tp(vi, cp,q,r)}.

/* Update the scheduling priority values of successor tasks. */
7 Update tlevel(vj), where vj ∈ suc(vi).
8 return A(vi).

Notably, both tlevel(vi) and blevel(vi) are derived using the actually allocated
vCPU, not the average processing speed or the average bandwidth. Thus,
accurate scheduling priorities are used in this phase.

In line 26 of Algorithm 1, SF-CUV tries to find the new allocation target
vCPU by calling Algorithm 2. In line 1 of Algorithm 2, the set of tasks that
belong to the same container as vi, is defined as Ψ(vi). If such tasks exist
(line 2 of Algorithm 2), Cvcpu(vi) is the set of vCPUs to which a task with
the same container as vi is allocated (line 3 of Algorithm 2). Then, the vCPU
by which the finish time of vi is minimized in Cvcpu(vi) is selected as A(vi).
In line 4 of Algorithm 2, each task is allocated by tracing already allocated
vCPUs for every task in Ψ(vi). Note that no container downloading time is
required in this case. This procedure aims to suppress the number of containers
and to minimize the makespan by container sharing among tasks. In line 5 of
Algorithm 2, when there are no tasks in Ψ(vi), the vCPU that minimizes the
finish time of vi in the entire set of vCPUs is selected as A(vi). In this case,
the container downloading time is required when the finish time is derived at
line 5. After vi is allocated to an idle time slot of a vCPU, tlevel of successor
tasks of vi is updated for next task selection from fList. Then, in line 27 of
Algorithm 1, both fList and UEXtask are updated. Then tasks vj ∈ suc(vi)
are put into fList if all their predecessor tasks have been scheduled.

Example 4 Fig. 7 shows an example of the task ordering and actual vCPU
allocation phase. Fig. 7(a) corresponds to the state of (h) in Fig. 6. From this
state, in step 1 of (d), we select A from fList, and the tasks of the same
type as A are {B, E}. As Psi(vi) = {B, E} ̸= ∅, the process goes to line 2
of Algorithm 2. Here, we suppose that Uth(c1,1) = 60, U(c1,1,1, A) = 40, and
U(c1,1,2, B) = 20; then, we have 60

1
2 (40+20)

= 2. Thus, A is scheduled as c1,1,1
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in line 4 of Algorithm 2. Then, A is removed from fList and C is selected
from fList in line 27 of Algorithm 1. Similarly, C, E, and B are assumed
to be scheduled at c1,1,1, c1,1,1, and c1,1,2 by satisfying lines 3 and 4 of Al-
gorithm 2, respectively. In step 5, when D is scheduled to c1,1,2, SF-CUV at-
tempts to allocate D to an idle time slot of c1,1,2. Here, in (b), we assume that
U(c1,1,1, C) = 80, U(c1,1,2, D) = 60, and Uth(c1,1) = 60. In Eq. (3), we have
80+60

2 = 70 > Uth(c1,1) = 60. Thus, D must be allocated to another vCPU in
n1. The alternative vCPU by which the finish time of D is minimized is c1,2,1

because we assume that m1,2 has the same container as the one that D belongs
to. In such a case, no container downloading is required. Then, D is moved
from c1, 1, 2 to c1,2,1. In this manner, every task is re-allocated to each vCPU.
2

4.4 Time complexity of SF-CUV algorithm

To evaluate the time complexity of the SF-CUV algorithm, we start with the
first phase, i.e., the task clustering and pre-vCPU allocation phase. In line
3 of Algorithm 1, log |FREE| steps are required for one pivot selection; thus
this procedures costs O(|V | log |V |) in total. Once pivot is selected, the process
goes to find a target for the clustering step in line 6 or 10. In line 6, target is
the dominant task of blevel(vb) in (14), and it requires |suc(vb)| log |suc(vb)|
steps by tracing every edge from vb. As it requires one target task for each
clustering step, a total of |V | steps are required to trace all tasks. We have∑

nb∈V |suc(nb)| = |E| and |suc(nb)| ≤ |V |. Thus, line 6 costs O(|E| log |V |).
Similarly, line 10 costs O(|E| log |V |). The dominant part for the time com-
plexity in this phase is Update(cls(i)), as seen in lines 29–33 of Algorithm
1. In this part, all the edges and tasks in cls(i) should be traced to update
the information of cls(i). This requires (|V ′|+ |E′|) steps, where |V ′| and
|E′| are the number of tasks and edges within cls(i), respectively. Then, the
blevel of each task in out(i) must be updated; this requires log |suc(vk)| steps,
where vk ∈ out(i). Thus, in total, the time complexity of the first phase is
O(|V |(|V |+ |E|) log |E|).

For the second phase, i.e., the task ordering and actual vCPU allocation
phase, the dominant part is as shown in line 26 of Algorithm 1, i.e., Algorithm
2. In line 3 of Algorithm 2, generating Cvcpu(vi) requires |Ψ(vi)| steps and the
total time complexity is O(|V |2). In lines 4 and 6 of Algorithm 2, the time slot
by which the makespan is minimized can be found by tracing each time slot
for each vCPU. Thus, it requires |Cvcpu(vi)||V | steps and its time complexity
is O(|Cvcpu||V |2).

Therefore, the time complexity of the SF-CUV algorithm is

max{O(|V |(|V |+ |E|) log |E|), O(|Cvcpu||V |2)}. (19)
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Fig. 7 Example of task ordering and actual vCPU allocation.

5 Experimental results

In this section, we present and compare the results obtained via simulation
and those obtained in a real environment. We compared the makespan, number
of allocated computational resources, and number of containers to verify the
effect of SF-CUV on resource utilization.

5.1 Relationship of objectives and evaluation items

Table 2 indicates the relationship between objectives of SF-CUV and evalua-
tion items. SF-CUV attempts to minimize the makespan by the combination
of task clustering and pre-vCPU allocation phase (i) and task ordering by the
scheduling priority phase (ii). In the experimental comparison investigated in
the simulation, Section 5.2.2 corresponds to the makespan minimization. In
the real environment, Sections 5.3.6 and 5.3.7 correspond to it.

In phase (i) of the SF-CUV algorithm, the number of required vCPUs
is suppressed by each clustering step; that is, the resultant set of vCPUs is
that which minimizes WSL. Thus, the evaluation point is how each vCPU is
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Table 2 Mapping of objectives and comparison items.

Objectives in SF-CUV Phase Simulation Real environment

SL minimization (i), (ii) Sec. 5.2.2 Sec. 5.3.6, 5.3.7
vCPU utilization (i), (ii) Sec. 5.2.3 Sec. 5.3.6, 5.3.7
container utilization (ii) Sec. 5.2.3 Sec. 5.3.5, 5.3.6,

effectively utilized to minimize the makespan, i.e., the degree of contribution
of each vCPU to minimizing the makespan, which is presented in Sections
5.2.3, 5.3.6, and 5.3.7.

In phase (ii), SF-CUV attempts to reallocate a task to a vCPU with the
same type, but only if the makespan can be made smaller. Thus, the evaluation
point is how effectively each task is shared to minimize the makespan. The
corresponding parts are described in Sections 5.2.3, 5.3.5, and 5.3.6.

5.1.1 Comparison targets

Because the assumed workflow in this study consists of batch-type tasks, not all
conventional approaches [5–15] can be compared with the SF-CUV algorithm.
We categorized workflow algorithms for batch-type tasks as follows.

– SF-CUV without reallocation (CUV-FIX):
In this approach, each allocated vCPU in the clustering phase is fixed in
the task ordering phase. Thus, the allocation is completed in the clustering
phase. This approach is required to confirm the effect of actual vCPU
allocation in the second phase in SF-CUV.

– Capacity-based approach (CAP-based):
In this approach, the order for task selection is based on the increasing
order of the finish time with the average processing speed and the average
communication bandwidth. Then, the selected task is allocated to the idle
time slot of the vCPU with the largest residual capacity. Capacity in this
simulation implies the clock frequency of each vCPU, i.e., the amount that
a vCPU can process in a time unit. A vCPU having a higher processing
speed has a higher task allocation priority than the nodes with lower pro-
cessing speeds. The adoption of such capacity-based task allocation has
been presented in the literature [6,9].

– Communication locality-based approach (COM-based): This approach tries
to minimize the communication time among tasks, i.e., the output data
from one task is sent to the nearest node having sufficient capacity to
accommodate the target task. Such data locality-based task allocation has
been presented in the literature [5,10].

– List-based task scheduling algorithm (HEFT [34] and PEFT [36]):
Heterogeneous earliest finish time (HEFT) is a well-known task scheduling
algorithm that is widely employed in real systems such as ASKALON [35].
Thus, in this comparison, we adopted HEFT as a criterion from the task
scheduling perspective. Predict-EFT (PEFT) is a HEFT alternative that
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outputs a better makespan than HEFT [36]. Thus, we adopted PEFT as
a state-of-the-art task scheduling algorithm. The objective is to minimize
the makespan, and no other criterion is considered. Both HEFT and PEFT
use the average processing speed and the communication bandwidth for
deriving the scheduling priority. If the constraint is given in Eq. (3) is
considered, these task scheduling algorithms have no criteria for selecting
the second allocation candidate that does not violate the constraint. Thus,
in such a case, we modified these algorithms to allocate the selected task
to the vCPU that does not violate Eq. (3) and achieves the second-lowest
finish time. In this comparison, the reason for using them as a comparison
target is to confirm the effect of step 1 of SF-CUV on the makespan, i.e.,
we confirm whether task clustering as pre-allocation to derive an accurate
scheduling priority effect has a good effect on the makespan.

– Clustering-based task scheduling algorithm (CMWSL [21]):
As mentioned in Section 2, CMWSL attempts to cluster several tasks until
its cluster size exceeds the lower bound over the “single CPU” network.
Although the assumed system is different from that of SF-CUV, we in-
vestigate how the degree of parallelism is degraded by imposing the lower
bound in a cloud. As for other task clustering algorithms [25–27], the ob-
jective or the assumed environment is quite different; the algorithm [25]
assumes a workflow having if/else edges, thus we cannot observe the effect
through task occurrence-based clustering in the assumed system in this ex-
periment. The objective of the algorithm in [26] is to minimize the cost, and
the makespan can be made smaller by only the vertical clustering for data
localization among sequential tasks. As such a data localization concept is
included in the “COM-based” approach, we excluded the algorithm in [26]
as a comparison target. The algorithm in [27] assumes only a homogeneous
system and thus we excluded it from the comparison.

– A Docker container-based workflow scheduling(SOC: Stretch Out and Com-
pact [24])
In this algorithm, the critical path is derived by considering the container
image download time, and then each task is allocated to vCPU. Then each
allocated task that does not belong to the critical path is allocated in order
not to affect the makespan.

5.2 Comparison in simulation

5.2.1 Simulation setup

In this subsection, we describe the simulation environment; the real environ-
ment is described in Section 5.3. We developed the simulator [38], where one
or more workflow requests are processed among multiple cloud sites, and each
cloud site has one or more nodes over the network. The i-th workflow request
is denoted as Si = (Vi, Ei), and the entire workflow is denoted as

S = (V,E) = (V1 ∪ V2 ∪ · · · ∪ Vn, E1 ∪ E2 ∪ · · · ∪ En).
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Table 3 Setup parameters of the simulation.

workflow(Random) ♯ of workflows {1, 5, 10, 20}
|V | per workflow {10, 30, 50, 100, 500}
♯ of container types {3, 5, 10, 20}
Out degree of task 1 to 5
Workload of task 1000 to 10000 (MI)
Container image size Randomly chosen in 50 – 1000 (MB)

max
di,j∈E

{di,j}

min
di,j∈E

{di,j}
100

CPU usage for each task 30% to 90%
workflow (Montage) ♯ of workflows {1, 5, 10, 20}

|V | per workflow {25, 50, 100, 1000}
♯ of container types {3, 5, 10, 20}
Container image size Randomly chosen in 50 – 1000 (MB)
CPU usage for each task 10% to 90%

workflow (Epigenomics) ♯ of workflows {1, 5, 10, 20}
|V | per workflow {24, 46, 100, 997}
♯ of container types {3, 5, 10, 20}
Container image size Randomly chosen in 50 – 1000 (MB)
CPU usage for each task 10% to 90%

System ♯ of cloud sites 5
♯ of hosts per cloud 1 to 10
♯ of cores per node 2 to 18
♯ of vCPUs per core 2
Max. usage per core {70%, 80%, 90%, 100%}
BW among clouds {100, 300, 500, 1024} (Mbps)
BW within cloud {1, 10} (Gbps)
Frequency at 1 vCPU 2.0 to 3.0 (GHz)

Then, S is the input for the simulation. Each task can perform various types
of processing, e.g., encoding, rendering, and matrix operation, i.e., each task
requires input data or files to output data or files as batch processing. In this
context, we assume that several clients submit their own workflow requests.
The simulation environment was developed and run via jdk1.8.0 191 on an
Intel R⃝ Xeon R⃝ E-2176M CPU (2.70 GHz) with 32 GB of RAM.

Table 3 summarizes the setup parameters used in the simulation. We gen-
erated two types of workflows, i.e., randomly generated workflow (random
workflow) to handle a general workflow structure, and real-world applications
such as the Montage workflow and Epigenomics workflow expressed as a di-
rected acyclic graph in XML (DAX) [37]. In particular, the Montage workflow
is used for image transformation and image synthesis mainly for astronomi-
cal image processing. The Epigenomics workflow is used in various genome
sequencing operations for genome analysis. Both workflows typically require
large amounts of computational power and data exchanged among tasks, i.e.,
tasks. Thus, they are well suited for the simulation to verify the effectiveness
in terms of resource utilization in clouds. The number of workflow requests is
randomly chosen from {1, 5, 10, 20} and the number of tasks in a random work-
flow request is randomly chosen from {10, 30, 50, 100, 500}, i.e., each workflow
request initially consists of a workflow S = (V,E), and multiple workflows are
assumed to be scheduled simultaneously. In both the Montage workflow and
the Epigenomics workflow, we used four patterns of DAX files for the simu-
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Fig. 9 Comparison of makespan for a random workflow.

lation. In this context, the simulation shows how each task in each workflow
should be allocated and scheduled to share a function among workflows.

For the system parameters, we assume that there are 5 cloud sites, each
of which has 1–10 computing hosts. Each host has 1 CPU socket, and the
number of cores is randomly chosen from {2, 4, 6, . . . , 18}. Then, each core has
2 vCPUs with hyper-threading and the ratio of the number of logical CPUs to
the number of vCPUs is assumed to be 1.0 so that each vCPU provides the full
capacity for each allocated task. Next, each task is assumed to be allocated to
a vCPU. For the communication bandwidth, we assume that the bandwidth
between clouds is smaller than that between hosts in a cloud.

5.2.2 Comparison of makespan

In our experiments, we compared the makespan for varying communication-
to-computation ratios (CCRs) [34,21]. We assumed 0 < CCR ≤ 10 to cover
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Fig. 11 Comparison of makespan for the Epigenomics workflow.

various applications. If the CCR of a workflow is high, the workflow is said to
be data-intensive. As the clustering metric in SF-CUV is WSL to minimize the
makespan after every task is scheduled, we first validated whether WSL in SF-
CUV is smaller than in other approaches. Fig. 8 shows the comparison results
of WSL in a random workflow, where the y-axis indicates the WSL ratio when
SF-CUV is set to 1.0, and WSL is derived after every task is scheduled. WSL
shown in this figure is based on the averaged WSL by 100 trials for each CCR.
SF-CUV outperforms the other approaches in every CCR. In particular, from
the comparison between WSL of SF-CUV and CUV-FIX, it is observed that
WSL is improved from phase (i) to phase (ii) because the difference between
them is whether phase (ii) is performed. For the comparison between SF-CUV
and CMWSL, we conclude that imposing the lower bound by CMWSL does
not always lead to WSL minimization on a cloud where multiple processing
units are included in a node.

For the metric of the makespan for the comparison, we used the schedule
length ratio (SLR) [34] to measure the performance of each task allocation
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approach. The SLR is defined as follows:

SLR =
Tf (vend, A(vend))∑

vk∈CP {
D(vk)
βave

+ Tp(vk, αave)}
, (20)

where αave is the average processing speed and βave is the average communi-
cation bandwidth. CP is the critical path in the initial state with the average
processing speed and average communication bandwidth. Note that SLR at
(20) includes the container downloading time because every task needs its
container downloading before the actual processing. Figs. 9, 10, and 11 show
the comparison results of the SLR of three types of workflows derived as the
average value in 100 trials, where (a) shows the results obtained by varying
CCR and (b) shows the results obtained by varying the number of workflows.
We averaged SLR by 100 for each CCR in (a) and each number of workflows
in (b). From Fig. 9(a), we can observe that SF-CUV outperforms all the other
approaches in every CCR. By comparing SF-CUV and CUV-FIX, we can con-
clude that the allocation target should be determined in the set of vCPUs in
the same node as the vCPU that was determined in the clustering phase. For
the comparison with the conventional task scheduling algorithms, i.e., HEFT,
PEFT, CMWSL and SOC, SF-CUV outperforms these approaches, whereas
these approached outperform CUV-FIX when CCR ranges from 0.1 to 5.0.
In Fig. 9(b), we observe that SLR increases with the number of workflows
in all the approaches. This is because a higher number of workflows means a
larger-scale problem, although the dominant path length such as the critical
path depends on each workflow. The result is that the task with the highest
scheduling priority must be selected from the many free tasks. Thus, the ac-
curacy in terms of the scheduling priority becomes crucial to the makespan.
Therefore, the average-based scheduling priority derived by HEFT and PEFT
tends to be degraded with a higher number of workflows. SF-CUV outper-
forms all the other approaches in all cases, whereas SLR by CUV-FIX is worse
than SF-CUV owing to inaccurate actual task allocation. In Fig. 10(a) and
(b), SLR by SF-CUV outperforms the other approaches in every CCR. Also,
SLR by SF-CUV is the best among all the approaches in Fig. 11(a) and (b).

Thus, from these results, we can conclude that (i) task clustering itself does
not always derive a good makespan in a computation-intensive workflow, and
(ii) an accurate scheduling priority is necessary for a data-intensive workflow.
Therefore, an task scheduling method that adopts a clustering policy and an
accurate scheduling policy outputs a good makespan in every CCR. As for
CMWSL, we cannot observe a positive effect by imposing the lower bound in
a cloud, where multiple VMs belong to a node. From the obtained results, we
can conclude that SF-CUV outputs a good makespan even if CCR becomes
higher or the problem scale becomes larger.

5.2.3 Comparison of resource utilization

To compare resource utilization, we used two measures: (i) efficiency [21] and
(ii) average number of tasks of the same type per vCPU. Efficiency is the
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Fig. 12 Comparison in terms of resource utilization for a random workflow.
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Fig. 13 Comparison in terms of resource utilization for the Montage workflow.
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degree of speedup ratio per vCPU, i.e., how each vCPU is utilized, which is
defined as follows:

Efficiency =

∑
vi∈V Tp(wi, αave)

|C ′vcpu| × Tf (vend, A(vend))
, (21)

where C ′vcpu is the set of actually allocated vCPUs. For (ii), the measure is
defined as

|V |∑
ck,l,m∈Cvcpu′Ntype(ck,l,m)

, (22)

where Ntype(ck,l,m) is the number of tasks that shares containers in the vCPU
ck,l,m, that we call the degree of container sharing.

Figs. 12, 13, and 14 show the comparison results in terms of (a) efficiency
and (b) degree of container sharing. In Fig. 12 (a), SF-CUV has the highest
efficiency for all CCRs, whereas the CAP-based method has the lowest effi-
ciency. This is because the CAP-based approach tries to find a vCPU having
the highest residual capacity. Thus, one of the unallocated vCPUs can be an
allocation candidate and the number of allocated vCPUs increases. For CUV-
FIX, the number of allocated vCPUs is the same as that in the clustering
phase, whereas SF-CUV tries to move an task to another vCPU while consid-
ering the minimum finish time in the task ordering and actual vCPU allocation
phase. As for HEFT and PEFT, they derive a better makespan than CUV-FIX
when CCR ranges from 0.1 to 5.0 in Fig. 9(a), but they do not derive better
efficiency in every CCR in Fig. 12(a). One of the reasons for the inefficiency
is that both try to allocate an task to an idle time slot of a node having no
task to achieve a good makespan. As a result, many nodes can become task
allocation targets. CMWSL outperforms both HEFT and PEFT in efficiency
because more tasks are allocated to a vCPU by imposing the lower bound;
that is, the required number of vCPUs in CMWSL is smaller than in HEFT
and PEFT. In Fig. 12(b), we can see that SF-CUV has the highest degree of
container sharing for all CCRs, then SOC has the next-highest value because
it tries to localize the container downloading time by using the “stretch out”
based critical path. In both the CAP-based and the COM-based approaches,
the degree of container sharing is lower than that in CUV-FIX in every CCR.
As for HEFT, PEFT, and CMWSL, as they do not consider the number of
sharing tasks, their degree of container sharing is lower than that of CUV-FIX
in every CCR. Thus, each task can be effectively shared in SF-CUV and the
number of containers can be decreased compared with the other approaches. In
Fig. 13(a) and (b), SF-CUV outperforms the other approaches in every CCR,
and the CUV-FIX and COM-based approaches obtain better results than the
COM-based, HEFT, and PEFT approaches. SOC has the next-highest degree
of container sharing in Fig. 13(b). In Fig. 14(a), SF-CUV outperforms the other
approaches in terms of efficiency. In Fig. 14(b), the COM-based approach ob-
tains a better degree of container sharing than CUV-FIX when CCR is 5.0 or
higher. Thus, the data-locality-based task allocation scheme can contribute to
improved resource utilization.
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In this comparison, we can conclude that an task reallocation scheme such
as SF-CUV leads to a suppression in the number of allocated vCPUs and
higher container sharing. Thus, using only a clustering phase cannot always
suppress the number of allocated vCPUs, which depends on the clustering
policy as well as the performance of each computational resource.

5.3 Comparison in a real environment

5.3.1 Objective

We implemented a workflow engine to incorporate task scheduling algorithms
including SF-CUV for performance verification in a real environment. We as-
sume that each task is performed in a heterogeneous distributed environment,
where each node has different configurations, such as cloud-enabled and edge
devices for processing data from IoT devices in a batch-processing manner. In
this context, we conducted performance comparisons in terms of the makespan
and resource utilization to verify the practicality of SF-CUV. If the degree of
container sharing is higher, the number of sharing tasks becomes lower. Thus,
the makespan can be made smaller. Therefore, we compared these metrics
in two scenarios, i.e., “No task pre-deployment” presented in Section 5.3.6,
where every computational resource has no task (container) before schedul-
ing the tasks, and “task pre-deployment” presented in Section 5.3.7, where an
task has been deployed on every computational resource before scheduling the
tasks to verify the effect of container sharing in SF-CUV.

5.3.2 Real environment setup

Fig. 15 shows the environment in which we conducted a performance compar-
ison for a real situation. In this environment, we set up a heterogeneous com-
puting environment in two different networks, i.e., NW♯1 and NW♯2. In these
networks, we deployed computer hosts on which VMs run through Apache
CloudStack [40]. Each VM works on Ubuntu Desktop 18.04.3 LTS through
KVM hypervisor. Then our developed workflow engine named SFlow [39] was
installed on every VM. Although the mapping between each CPU core and
each vCPU is typically controlled by a hypervisor, in this experiment, we man-
ually mapped each CPU core and each vCPU by CPU pinning in advance.
Then “taskset” command is set to run the specific vCPU for the allocated
task. We assume that each task is allocated to each vCPU by an task schedul-
ing algorithm. According to the table shown in Fig. 15, Cloud♯1 and Cloud♯2
in NW♯1 and Cloud♯3 in NW♯2 have 15 VMs, 6 VMs, and 8 VMs, respec-
tively. Moreover, the bottleneck network bandwidth was set as 100 Mbps by
deploying a router having 100 Mbps NIC between NW♯1 and NW♯2. In NW♯1,
there are two computing devices denoted as Dev.♯1 and Dev.♯2, on which the
container can be deployed while no VMs are deployed.
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Fig. 15 Real environment for the experiment.

As for the processing speed for each processor, we set it from 2.0 to 3.0
GHz. The maximum usage rate for each vCPU was set as 80% to avoid exceed-
ing 100%, because, typically, user processes and kernel processes continuously
occupy each CPU usage to a certain degree.

In this environment, we assume that one task corresponds to one Docker
container [41] that is stored in the “Container Repository” in Fig. 15. Thus,
if a node has no task for execution, it downloads the task from the Container
Repository by SCP and then begins execution. If the START task requires
one input file and the target node of the START task has no input file, it
downloads the input file from the “File Server” by SCP. Thus, we assume that
the file transfer involving the input file and Docker container may occur.
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Fig. 16 Applied workflow structure.

5.3.3 Applied workflow for a real environment

In this real environment, we assume a workflow in which a large input file
is processed in parallel among the networks, e.g., an image file is analyzed
for IoT data processing. In particular, from an image captured by a camera,
the number of faces (hereinafter, “faces”) is counted to specify the degree of
congestion in a specific purpose.

Fig. 16 shows the applied workflow in the real environment. The workflow
has six types of task, i.e., A, B, C, D, E, and F , and every task is executed
on a Docker in which OpenCV [42] is pre-installed. Then, we generated the
OpenCV-enabled Docker image and compressed it as a 1.22 GB tar file that
we name “BaseSF-tar,” and it was stored in the “Container Repository” as
in Fig. 15. As the workflow has six types of task, we generated six different
Docker images based on “BaseSF-tar,” i.e., every task Docker image has the
same file size (1.22 GB).

In the workflow, vA
1 divides the input image into |B| sub-images, where

|B| is a variable in the experiment; and we used the 5.45 MB (small image)
and 61.7MB (large image) files as the input file. At vB

k , the divided sub-image
is processed for noise removal, and the output data size is set as D

|B| in the
configuration file for workflow submitted to “Delegator” in Fig. 15. Then,
vC

k processes the count of the number of faces and marks each face in the
sub-image using “CascadeClassifier.” For the data from vC

k to vD
k , its size is

assumed to be added with ϵ (MB) that corresponds to the size of marked
parts in the sub-image. As ϵ depends on the number of marked parts (i.e., the
number of faces) and the marking structure, we cannot know it in advance.
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Thus, in this experiment, we set ϵ to zero, i.e., the effect of marking on the
resultant data size is negligible. At the same time, the counted number is
sent from vC

k to vE
1 , and every sub-image is assumed to be half of the data

sent from vC
k to vD

k according to our measurement of their file sizes in the
image format transformation (png→ jpg) in advance. Then, each output sub-
image is merged at vF

1 . The data sent from vC
k to vD

k includes a text message
denoting the number of persons and additional information regarding the java
object for object serialization. According to our measurement in advance, its
size is 5 kB. In Fig. 16, the number of tasks in the workflow is defined as
1 + |B|+ |B|+ |B|+ 1 + 1 = 3|B|+ 3.

We measured the workload for each type of task by a test run on a 2.0
GHz vCPU; then, we set each workload from the time duration by the test
run. If an task takes the time duration t, we define the workload as 1000t.
In Fig. 16, workloads of vA

1 , vB
k , vC

k , vD
k , vE

1 , vF
1 are defined in the unit of MI

(million instructions).

5.3.4 Procedures

As for the processing flow, first, a user sends workflow information (workflow
info.) as a JSON file to the “Delegator” that is in charge of performing task
scheduling using the environmental information (Env. info) that includes ev-
ery host information (IP address for each node, the clock frequency for each
processor, a threshold value of the load for each CPU core, and communi-
cation bandwidth). Then, the Delegator derives the mapping and execution
order as the scheduling result. Then, it sends the request for execution of the
START task to the node that is specified by the scheduling result. At the
START task, we assume that no input file has been deployed on the node that
executes START task before the execution because there is no way to know
where the input file should be located before scheduling the task. Thus, in
every execution, the input file is first downloaded from the “File Server” in
Fig. 15 to the node for executing the START task. The following executions
are performed according to the scheduling result with the socket communica-
tion. When the execution of the END task is completed, its result is returned
to the Delegator. The makespan in this case is defined as the time duration
from the start time for downloading the input file to the finish time of the
resultant data arrival at the user.

5.3.5 Comparison results of container sharing

Figs. 17(a) and (b) shows the comparison results of the degree of container
sharing in the real environment. As the number of actually allocated vCPUs
is derived after each task scheduling (i.e., the value is derived at “Delegator”
in SFlow [39] in Fig. 15), it is the same in the cases of both no task pre-
deployment and task pre-deployment. Fig. 17(a) is the result for the small
input image size (5.45MB) and (b) is the result for the large input image
size (61.7MB). In both figures, the horizontal axis represents the number of
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Fig. 17 Comparisons degree of container sharing.

partitions, i.e., |B|. In Fig. 17(a), at |B| = 2, the degree of container sharing is
nearly the same among the algorithms. The reason is that the number of tasks
(|V | = 3(|B|+ 1) = 9 is not sufficient to provide the difference in the degree
of container sharing, i.e., no task has not been moved in the second phase in
SF-CUV, i.e., the “task ordering and actual vCPU allocation” phase. If |B|
is larger (5, 10, 20, 30), the difference increases and SF-CUV outperforms the
other approaches in terms of the degree of container sharing. In particular, the
difference between SF-CUV and CUV-FIX increases, i.e., more tasks have been
moved to be shared in the second phase compared with the case of |B| = 2.
We can see that SOC outperforms CAP-based, HEFT, PEFT, and CMWSL
in every case. From this result, SF-CUV can effectively share tasks when |B| is
larger than 5. For Fig. 17(b), the difference in terms of the degree of container
sharing is higher than that of (a), even at |B| = 2. The reason is that each
data size to be exchanged among tasks is larger than the case of a small image,
thereby more communications, i.e., tasks are localized in the same vCPU or a
VM by SF-CUV. As a result, more containers are shared among one VM than
the case of (a).

5.3.6 Comparison results in no task pre-deployment

In this experiment, we conducted performance comparisons in terms of the
makespan, efficiency defined in Eq. (21), and the degree of container sharing
defined in Eq. (22). The actual performance depends on the dynamics of the
nodes, such as fluctuation of computational and network load as well as on the
static performance, such as CPU frequency and network bandwidth. Thus, we
averaged these metrics over 10 trials for each algorithm for comparison.

Fig. 18 shows the comparison results in the case of no task pre-deployment,
where Fig. 18(a) shows the comparison results for the schedule length ratio
when SF-CUV is set to 1.0, and Fig. 18(b) shows the results for the efficiency
ratio when SF-CUV is set to 1.0. In (a) and (b), in all cases of |B|, SF-CUV
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Fig. 18 Comparisons of no task pre-deployment for the small image file.
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Fig. 19 Comparisons of no task pre-deployment for the large image file.
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Fig. 20 Comparisons of no task pre-deployment for multiple workflows.
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outperforms the other approaches in terms of the makespan and efficiency. In
particular, in Fig. 17, the degrees of container sharing in HEFT and PEFT are
worse than in the COM-based approach, and in Fig. 18(a) their makespans are
also worse. Thus, their efficiencies are worse than in the COM-based approach,
except in the case of |B| = 5. This is because more tasks (i.e., containers)
should be downloaded from the Container Repository in HEFT and PEFT
than in the COM-based approach. Thus, the downloading time becomes the
bottleneck of the makespan. As for CMWSL, its makespan is better than that
of the COM-based approach in Fig. 18(a), and efficiency in CMWSL is better
than the COM-based approach in Fig. 18(b). The reason is that the required
number of vCPUs is more suppressed by clustering with the lower bound than
with the COM-based approach; thus, efficiency in CMWSL is higher than that
in the COM-based approach.

Fig. 19 shows the comparison results for the large image file (61.7MB), and
it is observed that SF-CUV outperforms others in terms of the makespan and
efficiency from (a) and (b). If the input image file size is large, the data size
exchanged among tasks is larger than the case of small image file. As a result,
such large data communications are localized within one vCPU or one VM by
SF-CUV and both the makespan and efficiency are not degraded.

Fig. 20 shows the comparison results for multiple workflows, where muti-
ple image files (each file size is 61.7MB) are handled as input files. For each
workflow, we uniformly distributed |B| to make the application have variation
in terms of the data size, i.e., if the number of workflows is |N |, each case of
|B| is N

5 . For example, if N = 10, each two workflows try to divide the image
file into |B| = 2, 5, 10, 20, 30 partitions. Then such N workflows are handled as
the merged workflow for scheduling each task. In both results at (a) and (b) in
Fig. 20, we can see that SF-CUV outperforms others in terms of the makespan
and efficiency even if multiple workflows are scheduled simultaneously.

From the obtained results, it can be concluded that the degree of container
sharing can strongly affect the makespan in the case of no task pre-deployment,
and an algorithm must consider how each task should be shared among the
computational resources.

5.3.7 Comparison results in task pre-deployment

Fig. 21 shows the comparison results in terms of the makespan and efficiency
in the case of task pre-deployment. In this case, every type of task is deployed
before scheduling tasks, i.e., no task downloading is required. Thus, this case
corresponds to the ideal situation in which we can obtain information about
where and which task should be executed in advance. SF-CUV outperforms
the others in Fig. 21(a) and (b). In contrast to Fig. 18(a), in Fig. 21(a), HEFT
and PEFT obtain better makespans than the COM-based approach for each
number of partitions. In Fig. 21(b), we cannot observe superiority in terms
of efficiency among the COM-based, HEFT, PEFT, and CMWSL approaches.
Therefore, we conclude that a list-based task scheduling algorithm can be
applied to a workflow for minimizing the makespan if every computational
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Fig. 21 Comparisons of task pre-deployment for the small image file.
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Fig. 22 Comparisons of task pre-deployment for the large image file.
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Fig. 23 Comparisons of task pre-deployment for multiple workflows.
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resource is ready for executing the tasks; however, they still do not achieve
good efficiency. SF-CUV satisfies the requirement of makespan minimization
with a small number of computational resources with and without task pre-
deployment.

Fig. 22 shows the comparison results for the large image file (61.7MB), and
Fig. 23 shows the comparison results for multiple workflows. In both cases,
we can see that SF-CUV outperforms others in terms of the makespan and
efficiency. In particular, at Fig. 23(b) we can see the the difference of efficiency
between SF-CUV, CMWSL, and SOC become smaller with more workflows.
Since the total number of tasks becomes larger with increasing of the number
of workflows, thereby every vCPU is allocated to tasks in all algorithms. As
a result, efficiency depends on only the scheduling policy. This fact affects on
the behavior of Fig. 23(b).

6 Conclusion

In this paper, we proposed an task clustering algorithm, namely SF-CUV, to
minimize the makespan by effectively utilizing both vCPUs and containers.
In the task clustering and pre-vCPU allocation phase, WSL was minimized
to suppress the actual makespan in the task scheduling phase, and this phase
derived an accurate scheduling priority. Also in this phase, the number of re-
quired vCPUs is effectively suppressed by clustering steps. In the task ordering
and actual task reallocation phase, each task was scheduled with the accu-
rate scheduling priority and moved to another vCPU for sharing containers
among tasks for each vCPU to avoid redundant container downloading proce-
dures. Both the simulation results and the real environmental results showed
that SF-CUV outperforms other task scheduling algorithms, i.e., it provides
a better makespan while effectively utilizing the vCPUs and containers. Fur-
thermore, we explored a method for dynamically determining the CPU usage
threshold for handling actual system dynamics. In the future, more realistic
requirements, such as memory/hard disk capacities, should be considered for
incorporating SF-CUV into a real environment.
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