
Distributed Control Function Selection Method for Service
Function Chaining in NDN

Naoki Yamaguchi∗
naoki.11_13@asagi.waseda.jp

Waseda University
Tokyo, Japan

Hidenori Nakazato
nakazato@waseda.jp
Waseda University

Tokyo, Japan

ABSTRACT
In this article, we discuss the function selection method in Function
Chaining (NDN-FC) on Named Data Networking (NDN), which is
an information-centric networking technology, in order to solve the
problems caused by the increase in IoT devices. There is a previous
study [10] on the function selection method in NDN-FC, buttheir
proposal is a centralized approach and a coordinator overlooking
the entire network is required. We propose a distributed control
type function selection method. In order to implement this method,
it is necessary to extend interest packet, data packet and forwarding
of each node. We compared the existing method and the proposed
method using ndnSIM, which is an NDN network simulator. The
results of the proposed method are close to those of the method
that requires the coordinator in terms of service execution delay
and load balancing.

CCS CONCEPTS
• Networks → In-network processing; Naming and addressing;
Network simulations; Routing protocols.

KEYWORDS
NDN, function chaining, IoT, function selection
ACM Reference Format:
Naoki Yamaguchi and Hidenori Nakazato. 2020. Distributed Control Func-
tion Selection Method for Service Function Chaining in NDN. In Cloud
Continuum Services for Smart IoT Systems (CCIoT ’20), November 16–19, 2020,
Virtual Event, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3417310.3431397

1 INTRODUCTION
In recent years, IoT technology is utilized in various fields. Increase
in IoT devices put a lot of strain on cloud servers that provide IoT
services and on networks that deliver the contents. It is a serious
problem because many IoT services, e.g. autonomous driving, smart
home, and factory automation, requires low latency.

There is a proposal “Edge Computing” [2] to resolve this problem.
Edge Computing is the technology, that reduces network traffic
and processes data with low latency, due to processing information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCIoT ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8131-4/20/11. . . $15.00
https://doi.org/10.1145/3417310.3431397

individually near the source of information and near the place
where it used. Nevertheless, Edge Computing has the problems
that a single edge needs to have the required processing power
for processing requests, and it is necessary to consider where to
process those requests.

To solve this problem, we have applied Service Function Chain-
ing (SFC) [7]. SFC is a technology that defines network functions
represented by NAT, Firewall, load balancer, etc. as “functions,” allo-
cates them to computing resources in the network, controls packets
to go through the node with the desired functions, and perform
in-network processing. By creating a function chain, a series of
functions are executed to get the desired output. These functions
can be started and stopped flexibly on a general-purpose OS like the
functions in NFV [3], enabling more efficient processing within the
network. We extend this and define function the data processing
required by IoT services as a function and place it in network. In
order to realize seamless and dynamic SFC, we adopt a protocol,
in contrast to typical location-oriented IP protocols, called Named
Data Networking(NDN)[11] which is one of content oriented pro-
tocols. NDN makes it possible to manage functions and IoT data
more intuitively and easily by routing with name. Since functions
for IoT services can also be requested by names, it is possible to
flexibly respond even if the location of the function is dynamically
changed. More efficient communication is expected by using both
the two technologies of function chaining and routing by name.
This combination is called NDN-FC [4]. We can prepare several
instances with the same function name to avoid concentrating the
lord on one function instance. Then, we need a mechanism to select
an appropriate instance to be used.

In this paper, we consider the method to select the appropriate
function instances among the available instances of the same func-
tion to be executed in the chain of functions. The rest of the paper is
organized as follows. In section 2, NDN-FC, which is the system we
assume as the environment of implementing SFC. We also review
some previously proposed function selection algorithms there. We
propose one function selection method and NDN-FC extension for
its implementation in section 3. The proposed method was evalu-
ated from the viewpoint of load distribution and execution delay in
section 4. Lastly, section 5 concludes this paper.

2 RELATEDWORKS
2.1 VNF Scheduling
There are not many related studies on SFC in a drastic network
environment such as NDN. Therefore, we review some related
research in the NFV environment, which is more advanced. One of
the problems related to function selection is the Virtual Network

26

https://doi.org/10.1145/3417310.3431397
https://doi.org/10.1145/3417310.3431397
https://doi.org/10.1145/3417310.3431397

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Naoki Yamaguchi and Hidenori Nakazato

Function (VNF), it is network function implemented as software on
a general-purpose OS, scheduling problem.

[9] showed that the VNF scheduling problem can be formulated
by a flexible job-shop problem. The job-shop problem is a problem
in which when there is a job consisting of multiple tasks in a fixed
execution order, all the tasks are assigned to the machine that
executes them so that the processing time of the job is the shortest.
Think of a job as a VNF, a job as a service consisting of multiple
ordered VNFs, and a machine as a VM with a VNF assigned, and
this job-shop problem can be translated into a VNF scheduling
problem. Flexible means that one work can be processed by two or
more machines, which is consistent with the fact that similar VNFs
are placed in multiple VMs in VNF scheduling. This problem is an
NP-hard problem, and [9] only shows the first step in formalizing
the VNF scheduling problem, and no concrete method to solve
it is proposed. Further, in this problem, it is premised that the
number of service requests corresponding to the number of jobs is
clear, and it is a scheduling problem assuming offline. In response,
[6] formulated a VNF mapping / scheduling problem premised on
online, and proposed three greedy algorithms and tabu search-
based heuristics as methods to solve this problem. However, both
[9] and [6] do not consider the link delay when forwarding a packet
from one function node to another. This delay can be ignored if
all chained VNFs are located in the same data center, but if the
chained VNFs are located in different data centers, for example in
a multi-cloud environment. Therefore, in [8], we showed that the
transmission delay cannot be ignored as the size of the network
service increases, and formulated a new VNF scheduling problem
that takes the transmission / scheduling delay into consideration.
Furthermore, this problem was evaluated using an optimal mixed
integer linear program (MILP) framework and genetic algorithm-
based heuristics. So far,some studies on the scheduling problem of
VNF, but all of these problems are very complicated. In the IoT data
SFC we discuss, scheduling all of these is a more difficult problem,
as instance of the function is located everywhere in the network.
Therefore, we aim to reduce the amount of calculation and select
the appropriate function instance by continuously selecting the
optimal case locally.

2.2 NDN-FC
NDN-FC is a mechanism to implement SFC over NDN. Two types
of packets: interest packet and data packet are used for communica-
tions in NDN. A user requests a content with an interest packet and
the requested content is returned in a data packet. In NDN, a user
requesting content is called a consumer and a holder of content is
called a producer. In forwarding, each router decides the destination
of the packet based on the content name of the interest packet.
NDN-FC enables routing to functions by adding a new field called
“Function Name” to interest packets. In NDN, data packets are sent
back through the same path that the interest packet is forwarded
through but in the reverse order. In order to apply the requested
function chain to the content in a data packet, the corresponding
interest packet has to pass through the function in reverse order
in advance. For instance, when SFC is applied to a certain content
in the order of F1, F2, and F3, the Function Name field in the in-
terest packet needs to carry the specification /F3/F2/F1. If a router

receives this interest packet, it refers to the prefix at the beginning
of the Function Name and routes the packet to F3. And if an interest
packet arrives at a function, each function refers to the Function
Name of the interest packet and removes the leading prefix cor-
responding to its function name. That is, the Function Name field
/F3/F2/F1 in the interest packet that reaches the function F3 is re-
placed with the Function Name /F2/F1. By repeating this process,
the interest packet goes through all the requested functions, and the
Function Name becomes empty eventually. Then finally the packet
is transferred to the data producer. The data producer prepares a
data packet including the requested content and the data packet is
forwarded back through the path of the interest packet. The data
packet reaches each function in the reverse order of the interest,
and the data packet is processed by the function and delivered to
the original sender of the interest packet, or consumer (Fig. 1).

Figure 1: Forwarding in NDN-FC

2.3 Previously Proposed Function Selection
Methods

[10] proposed a function selection method assuming NDN-FC fo-
cusing on the network load and function utilization in order to
distribute the load of functions and minimize the service execution
delay. It was shown that these objectives can be achieved by consid-
ering each function call count as the indicator of function utilization
rate and the number of hops passed during SFC execution as the in-
dicator of network load. This method requires a coordinator where
load information of all functions and network topology information
need to be available. Let us call this method DL-MD-C method for
load distribution and minimum delay in centralized setting.

DL-MD-C adopts a function selection criteria which combines
the number of requests on a function instance and the number of
hops between functions in SFC.

Assume IoT service 𝑆 is composed of a sequence of 𝑖 functions
deployed in a network node. The network is made of 𝑛 nodes. There
are𝑚 types of functions and multiple instances of the same type
functions are deployed over the 𝑛 nodes. Let 𝑁 = {𝑛1, 𝑛2, . . . , 𝑛𝑛}
be the set of nodes in the network. 𝐹 is the set of function types.
Let 𝐹𝑆 express the sequence of function types to be executed to
implement service 𝑆, i.e., 𝐹𝑠 : 𝑓1 → 𝑓2 → · · · → 𝑓𝑖 where 𝑓𝑗 ∈ 𝐹 for
1 ≤ 𝑗 ≤ 𝑖 .. Also, let 𝑁 (𝑓𝑗) be the set of nodes where an instance of
function type 𝑓𝑗 is deployed.

27

Distributed Control Function Selection Method for Service Function Chaining in NDN CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

Then, the function selection criteria is defined as follows. If 𝐶 𝑗𝑘

is the number of times 𝑓𝑗 at node 𝑛𝑘 is called and𝐻𝑘𝑙 is the number
of hops between node 𝑛𝑘 and 𝑛𝑙 , the function selection criteria for
service 𝑆 for node 𝑘 is defined as

𝑈𝑘 =

𝑖∑
𝑗=1

(𝛼𝐻𝑘𝑙 + 𝛽𝐶 𝑗𝑘), (1)

where 𝑛𝑙 ∈ 𝑁 (𝑓𝑥) and 𝑓𝑥 is the directly succeeding function after
𝑓𝑗 , i.e., 𝑓𝑗 → 𝑓𝑥 in 𝐹𝑠 . 𝛼 and 𝛽 are weight coefficient.

DL-MD-C method selects an instance of 𝑓𝑗 that minimizes𝑈𝑘 as
the component of SFC. To find the minimum 𝑈𝑘 , the coordinator
needs tomanage all parameters such as the number of hops between
nodes and the number of function calls to select function instances,
and it will become the bottleneck. Also, to find the minimum 𝑈𝑘 ,

all combinations of function instances to compose the function
sequence must be examined. The computation cost of DL-MD-C is
quite high.

3 FUNCTION SELECTION METHOD BY
DISTRIBUTED CONTROL

Our function selection method being proposed in this paper selects
one function at a time. An instance of the function to be executed
next is chosen when the instance is not selected yet. The selection
is performed either at the consumer node generating an interest
packet with filled Function Name field or at the node of a function
instance through which the interest packet goes through. In other
words, the selection is performed in a distributed manner.

Our solution is an approximate algorithm and does not guar-
antee a strict choice. In the discussion presented in this paper, we
assume one node hosts at most one function instance to verify the
availability of this algorithm. As long as the number of function
instances in the network is less than the number of nodes, this
assumption is valid for load balancing. The method presented in
this paper can be applied even if multiple function instances are
hosted by one node, however.

To make the selection, some information is exchanged among
consumers and functions but no coordinator which collects the
view of the entire network is necessary. Each consumer node and
function instance node maintains a table that stores the number of
calls to functions and the number of hops to functions. The table is
populated by information piggybacked on data packets as described
below.

3.1 Algorithm
As mentioned in section 2.2, if Function Name field in an interest
packet is filled with a sequence of function names, the interest
packet is forwarded to the first function in the sequence. So, the
functions after the first one in the sequence can be disregarded for
forwarding purpose.

Every time a function name which is not allocated a specific
function instance yet appears at the beginning of the Function
Name field of an interest packet for SFC, that is, when the consumer
sends the interest packet, or when the interest packet is sent out
from an function instance node after execution of the function,
the node 𝑛𝑘 refers to Function Information Table (FIT) described
below. The node finds 𝐻𝑘𝑙 , the number of hops from node 𝑛𝑘 to

the node 𝑛𝑙 hosting the function instance requested as the next
function in the Function Name field, and 𝐶 𝑗𝑙 , the number of calls
on the function instance of 𝑓𝑗 at node 𝑛𝑙 during the past 𝑇 seconds
from FIT. Then, the function instance at node 𝑛𝑘 that minimizes
𝑉𝑘 in eq.(2) is selected. Here, 𝛼 and 𝛽 represent the weight of the
number of times a function is called and the number of hops to the
function, and are arbitrary constants.

Assume a consumer node 𝑛0 transmits an interest packet with
its Function Name field set as F3/F2/F1 (Fig. 2). The consumer ob-
tains 𝐻0𝑙 and 𝐶3𝑙 (𝑙 ∈ 𝑁 (𝑓3)) of the nodes 𝑛𝑙 hosting the function
instances of function F3 from FIT, and evaluates them by the eq. (2).
Once F3a is selected as the instance to be used among the instances
F3a, F3b, and F3c of function F3, Function Name will be replaced
with F3a/F2/F1 and the interest is further forwarded. When the in-
terest packet is received by the node hosting the function instance
F3a, the F3a at the beginning of the Function Name field is deleted.
When the interest packet is further forwarded after execution of
F3a, the function instances of the next function F2 is evaluated
again by eq. (2) and replaced with the selected function instance
identifier.

By repeating this operation, the interest packet is delivered to
the producer specified in the content name field in the packet while
selecting appropriate function instances.

𝑉𝑘 = (𝛼𝐻𝑘𝑙 + 𝛽𝐶 𝑗𝑙) (2)

Figure 2: Forwarding by Distributed Control

3.2 Function Information Table (FIT) and
Packet Format Extension

In order to implement the above method, FIT holding information
of hop count and function call count is created. Also, a mechanism
for updating FIT is explained in this section. As described in section
3.1, the consumer and function nodes maintain FIT.

The FIT in a node hosting function instances stores the function
call counts of instances hosted by itself in addition to the informa-
tion of other function instances. Its own call count is initialized in a
predetermined period𝑇 . Furthermore,to avoid browsing unupdated
information and sending a large number of packets to the same
instance, the forwarder increments the function call count of the
function instance selected when shipping the Interest. Fig.3 shows
an image of the table of F3a in the example given in Fig. 2.

To update the information in FIT, it is necessary to exchange
information between function nodes. We added one field to interest

28

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Naoki Yamaguchi and Hidenori Nakazato

Figure 3: Image of The Table of F3a

packet format and three fields to data packet format defined in
NDN-FC. The field added to interest packet is Function Full Name
field. Function Name field, Partial Hop Count field, and Function
Call Count filed are added to data packet.

Function Name field added in data packet is used to know the
identifier of the previous function instance in the updating of FIT,
and Function Full Name filed added in interest packet helps it.

Function Full Name field is initialized with 𝑁𝑈𝐿𝐿, and every
time a function instance is selected at a consumer or function node,
the identifier of the selected function instance is appended at the
end of this field. By doing so, the sequence of function instance
identifiers for the executed SFC is written in this field. When a
data packet is created by the producer, the complete sequence of
function instance identifiers is acquired from the Function Full
Name field of the interest packet. The value in the Function Full
Name field in the interest packet is copied to the Function Name
field in the created data packet.

So the Function Name field added in the data packet initially
has the full name. This function name field is not referenced when
executing the first function of the sequence because the data packet
does not have the information to update the FIT. On the other hand,
when a data packet arrives at the second and subsequent instances
of the assigned function in the sequence, that is, when the data
Packet has the information to update FIT’s information, the function
instance identifier at the end of the Function Name field is extracted
and removed. The extracted function instance identifier expresses
the previous function executed while forwarding back the data
packet. Figure 4, Figure 5 show the operations of these fields,the
Function Full Name field and Function Name field,respectively.

Partial Hop Count field added in data packet is a field to measure
hop count between function nodes. Partial Hop Count is NULL
when a Data packet is created. When a data packet reaches a func-
tion node or consumer node, if the value of Partial Hop Count is
not NULL, the hop count field of the entry that indicated by the
identifier at the end of the Function Name field in its FIT is updated
using that value in the Partial Hop Count field. The entry to be
updated is the one for the last function instance in the of Function
Name field in the data packet. When sending a Data packet from
the Function node, the Partial Hop Count field is initialized to 0

Figure 4: The Operation for The Function Full Name Field

Figure 5: The Operation for The Function Name Field in
Data Packet

regardless of whether the Partial Hop Count is NULL or not. If the
Partial Hop Count field is not NULL, the value is incremented by
1 at every node on reception of the data packet regardless of the
node’s function instance hosting status.

On the other hand, Function Call Count is a field that conveys the
number of times each function instance has been called. Function
Call Count field is also set to NULL when a data packet is created.
When a node hosting function instance or a consumer node is
reached, if the value of Function Call Count field is not NULL, the
information of function call count field of an entry in its FIT is
updated using that value. The entry to be updated is the same entry
where hop count field is updated. Furthermore, when a data packet
reaches a function node, the number of times its own function
instance has been called in FIT is described in Function Call Count
field. The process of these series of Data packets is shown in Figure 6
using a part of the example of Figure 2.

4 EVALUATION
4.1 Simulation Environment
We performed simulations to evaluate the effectiveness of the pro-
posed method. In the simulation, distribution of function instance
load and the execution delay of services made of chains of functions
were measured using an NDN simulator ndnSIM [5]. A 24-node US
nation-wide topology[1] was used for the measurement (Figure 7).

Three instances of each of five different function types F1, F2,
F3, F4, and F5 were deployed in this network. The instances of the
same function type are distinguished by appending ’a,’ ’b,’ and ’c’

29

Distributed Control Function Selection Method for Service Function Chaining in NDN CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

Figure 6: The Process of Data Packet

at the end of the function type name such as F1a, F1b, and F1c.
Four consumers are connected to the network. The consumers
generate SFC requests. Two data producers are also attached to the
network. The consumers periodically select one from 12 types of
SFC requests as shown in Table 1) and send out an interest packet.
In this environment, we conducted a test to make 300 SFC requests
from consumers.Table 2 shows the parameters used in our proposed
algorithm for simulation.

Figure 7: U.S.-24- Node Topology

Table 1: SFC Request Types

Table 2: Parameters

For comparison, the following two function selection methods:
hop-first and lord-first were prepared in addition to the proposed
method and DL-MD-C.

Hop-first
Hop-first is a method that refers only to the information of
hop count when selecting a function, and selects the function
instances that form the path with the smallest number of
hops. Hop-first is equivalent to setting (𝛼, 𝛽) = (1, 0) in
eq. (2).

Lord-first
Lord-first is a method that refers only to the information of
function call count when selecting a function, and selects the
one with minimum function call count. Lord-first is exactly
alike (𝛼, 𝛽) = (0, 1) in eq. (2).

4.2 Function Distribution
We evaluated how much the load of the functions is distributed.
Figure 8 shows the function call count to each function instance
in each method. In order to show the degree of dispersion more
clearly, the function distribution degree defined in [10] is obtained
for each method. The function distribution degree is the sum of
the absolute value of the skew from the ideal number of function
calls.The function distribution degree 𝐷 is defines as

𝐷 =
∑

| < observed call counts > − < optimal call counts > |.

The closer the function distribution degree is to 0, the more uni-
formly the function instances are called. Figure 9 compares the
function distribution degrees of the four methods.

Looking at the figure, the performance of the proposed function
selection method shows a value between that of Lord-First and
Hop-First, which is slightly different from DL-MD-C. In particular,
function call counts from F1 to F3 of proposedmethod shows similar
characteristics to those of DL-MD-C. On the other hand, F4 and
F5 are slightly different from F1 to F3. This is because F4 and F5
are called less frequently than F1 to F3, so the tables were not
sufficiently updated by the Data packet. That is a major factor in the
slight difference between the function dispersion of the proposed
method and that of DL-MD-C.

4.3 Service Execution Delay
The delay from the user sending an SFC request to the user receiv-
ing the processed data packet for each function was measured. The
time required for the function to process the data packet was set
to 40𝑚𝑠 . The request frequency was changed from 10/𝑠 to 30/𝑠 to
compare different network load. Figure 10 shows the average ser-
vice execution time. The proposed method showed almost the same
performance as DL-MD-C. However, when the request frequency

30

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Naoki Yamaguchi and Hidenori Nakazato

Figure 8: Function Call Counts

Figure 9: The Degree of Function Dispersion

is increased to 30/𝑠 , the performance of the proposed method is
slightly inferior to DL-MD-C. This is because the centralized control
adopted by DL-MD-C assumes function call counts of all function
instances in the entire network are up-to-date, whereas the pro-
posed method refreshes the function call count at regular intervals
and the information may be tardy. The proposed method cannot
adapt to excessive requests arriving in a short period of time.

Figure 10: Service Execution Delay

5 CONCLUSION AND FUTUREWORK
In this paper, we have discussed how to implement the function
selection method in order to perform in-network processing of

IoT data by SFC using NDN on an actual network. By distributed
control that selects a function instance each time a request goes to
a function node, we aimed to avoid the problem caused by setting a
coordinator which becomes a bottleneck. Our distributed approach
brings the performance of function instance selection closer to the
ideal function selection. When the function distribution degree and
service execution delay are evaluated for the proposed method, the
performance of the proposed method is close to DL-MD-C which
assumes existence of a coordinator where all information need to
be gathered.

As a future extension of this work, we are going to consider the
effect of cache at network nodes which is a feature of NDN. It is
considered that the service execution delay can be shortened by
caching the data processed by the function in advance. However,
if the proposed method is applied as it is, there is a concern that
the information on function call count and hop count is out of
date when using the cache. Moreover, although only the function
selection is considered in this paper, where to place the function
is also an important issue in order to use the function efficiently.
In the future, it will be necessary to coordinate the allocation and
selection of functions.

ACKNOWLEDGMENTS
The research leading to these results has been supported by the
Ministry of Internal Affairs and Communications under Grant
No. JPJ000254, “R & D of fundamental technologies for effective use
of wired/wireless optimal control type radio waves corresponding
to increased IoT equipment” for the research and development of
the expansion of radio wave resources.

REFERENCES
[1] Dragos Andrei, BiswanathMukherjee, andDipakGhosal. 2020. Online Scheduling

of Large File Transfers over Lambda Grids. (09 2020).
[2] GE Digital. [n.d.]. Edge Computing and Cloud Give Intelligent Machines a Balanced

Load. Retrieved September 11, 2020 from https://www.ge.com/digital/blog/edge-
computing-and-cloud-give-intelligent-machines-balanced-load

[3] Network Functions Virtualisation ETSI. 2014. Network Functions Virtualisation
(NFV). Management and Orchestration 1 (2014), V1.

[4] Yohei Kumamoto, Hiroki Yoshii, and Hidenori Nakazato. 2020. Real-World Imple-
mentation of Function Chaining in Named Data Networking for IoT Environment.
In 2020 IEEE ComSoc International Communications Quality and Reliability Work-
shop (CQR). 1 – 6.

[5] Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang.
2016. ndnSIM 2: An updated NDN Simulator for NS-3. Technical Report NDN-0028.
Named Data Networking Project.

[6] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and S. Davy. 2015.
Design and evaluation of algorithms for mapping and scheduling of virtual
network functions. In Proceedings of the 2015 1st IEEE Conference on Network
Softwarization (NetSoft). 1–9.

[7] NOIA. [n.d.]. Service Function Chaining (SFC). Retrieved September 14, 2020
from https://docs.noia.network/v1.0/noia/service-function-chaining--sfc-

[8] L. Qu, C. Assi, and K. Shaban. 2016. Delay-Aware Scheduling and Resource
Optimization With Network Function Virtualization. IEEE Transactions on Com-
munications 64, 9 (2016), 3746–3758.

[9] J. F. Riera, E. Escalona, J. Batallé, E. Grasa, and J. A. García-Espín. 2014. Virtual
network function scheduling: Concept and challenges. In 2014 International
Conference on Smart Communications in Network Technologies (SaCoNeT). 1–5.

[10] Y. Shiraiwa and H. Nakazato. 2019. Function Selection Algorithm for Service
Function Chaining in NDN. In 2019 IEEE ComSoc International Communications
Quality and Reliability Workshop (CQR). 1–5.

[11] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. SIGCOMM Comput. Commun. Rev. 44, 3 (July 2014), 66–73.

31

https://www.ge.com/digital/blog/edge-computing-and-cloud-give-intelligent-machines-balanced-load
https://www.ge.com/digital/blog/edge-computing-and-cloud-give-intelligent-machines-balanced-load
https://docs.noia.network/v1.0/noia/service-function-chaining--sfc-

	Abstract
	1 Introduction
	2 Related Works
	2.1 VNF Scheduling
	2.2 NDN-FC
	2.3 Previously Proposed Function Selection Methods

	3 Function Selection Method by Distributed Control
	3.1 Algorithm
	3.2 Function Information Table (FIT) and Packet Format Extension

	4 Evaluation
	4.1 Simulation Environment
	4.2 Function Distribution
	4.3 Service Execution Delay

	5 Conclusion and Future Work
	Acknowledgments
	References

