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Abstract—In this paper, we discuss how to implement function
chaining in Named Data Networking (NDN), an incarnation of
information centric networking technology, for real-world IoT
environments. We explain our new architecture, called NDN-FC,
for function chaining over NDN, and how to extend existing
NDN software to support function chaining. The key features
discussed in this paper are Interest and Data packet structure,
forwarding methods, and segmentation and reassembly methods
of a content. Even in IoT environments, it is possible that most
content, such as image and video, does not fit into a single Data
packet. Segmentation and reassembly of a content is therefore
crucial. The feasibility of our proposed protocol for segmentation
and reassembly is displayed through a prototype implementation.
In order to support lightweight operation of functions, the
implementation is extended to use Docker container technology
to run functions. The performance of Docker implementation
and virtual machine implementation are compared.

Index Terms—NDN, function chaining, IoT, segmentation,
reassembly

I. INTRODUCTION

In recent years, the number of IoT devices have been
increasing rapidly. Consequently, there has also been a growth
in IoT applications and services, many of which require low
latency such as factory automation and autonomous driving.

In response to this, edge computing has been proposed.
Edge computing is the idea that by placing computing in-
frastructures closer to the edge devices, data can be processed
quicker and more efficiently compared to sending it out to a
cloud server [1]. However, the problem with this idea is that
it is heavily reliant on the location and processing power of a
single edge.

As a solution to this problem, we will apply the idea
of Service Function Chaining (SFC). With SFC, users can
control traffic through software to route packets to the desired
network services, which creates a virtual chain of network
services [2]. We use this idea and place computing resources
throughout the network, and run functions on them to process
the data. By chaining these functions, data can be processed in
a sequential manner to obtain the desired output. We can also
strategically and dynamically place these functions to prevent
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and relieve network congestion and load. In order to achieve
this, we will adopt a new communication protocol called
Named Data Networking (NDN). NDN routes data by Content
Name as opposed to the traditional IP, which routes according
to location. This will allow a more intuitive and simple
management of routing. This will be called NDN Function
Chaining (NDN-FC). NDN-FC provides us the flexibility to
choose an appropriate function instance out of many available
instances with the same function name. By combining SFC
and NDN we can make a more efficient IoT network.

In this paper we will discuss how to extend NDN to support
Function Chaining and in-network processing.

II. RELATED WORK
A. Named Function Networking (NFN)

C. Tschudin and M. Sifalakis [3] proposed a solution called
Named Function Networking (NFN). In comparison to NDN,
NFN uses Interest packets to request functions and parameters
through the use of A-expressions. In an NFN environment,
NEN routers are deployed in addition to normal NDN routers.
NFN routers have computing capabilities, and are responsible
for resolving NFN specific expressions and executing func-
tions. A simple architecture of NFN is shown in Fig. 1.
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Fig. 1. NFN Example

Interest[f(g(x))]

In this example, the consumer sends out an Interest packet
with the name /f (/g (/x)). /f and /g represent functions,
and /x represents the parameter data. Functions exist as byte
code, and are passed around in binary form [4]. Data will be
retrieved in the following way.

1) Interest/f{ /g( /x)) will be routed towards an NFN router.

2) When it arrives at the NFN router, the name will be

parsed into each component: /f, /g, and /x.



3) At this point, the NFN router will create Interest packets
for each component and forward them to their respective
producers.

4) When Data packets for each Interest are received, the
NFEN router will execute /f (/g (/x)).

5) Finally, the result will be sent back to the consumer.

Additionally, through the use of A-expressions, it is possible
to express a single function chain in multiple ways. For
example, func(data) can be expressed in the following ways
[4]:

1) func data

2) (Azy.z y) func data

3) (\y.func y) data

4) (A\z.z data) func

The benefit of this is that the same result can be obtained
through multiple different paths. For example, expressions 3.
and 4. can be represented as /data/( \y.func y) and /func/(Az.z
data) respectively. This means /data or /func can be used for
forwarding by using the above expressions to obtain the same
content. If a result cannot be found on the path /data, the NFN
router can use /func to find or compute the result.

Although NFN is a versatile and resilient architecture, it
requires the user to understand A-calculus to make full use of
its capabilities. This makes Interest names complex, which can
negate NDN’s benefit of simple management. This complexity
can also make troubleshooting difficult.

B. ICN Function Chaining (ICN-FC)

L. Liu et al. [5] proposed a solution called ICN Function
Chaining (ICN-FC). ICN-FC uses a simpler approach than
NEN for chaining functions. It uses the < symbol to connect
functions within the Interest name. A simple example is shown
in Fig. 2.
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Fig. 2. ICN-FC Example

In this example, A and B represent functions, and Data
represents the producer where the required data is located.
In order to chain functions, the Interest name will be set to
/A</B<—/Data. Each time the Interest packet passes through
a function, that function will be removed from the namespace.
By removing the function from the namespace, it is possible
to dynamically change the route of the Interest to a different
function.

Although ICN-FC proposes the concept of one mechanism
to perform function chaining in NDN environment, some detail
is missing. INC-FC creates 2 PIT entries for each forwarding
of an Interest packet with function chaining specification and
one of the entries is for the processing of a function. The
face specified by the entry cannot not be derived from face
where the Interest packet is arrived. How to specify the entry is

missing from the proposal. Also, ICN-FC is evaluated assum-
ing video processing. Although the segmentation / reassembly
between the source of a video and the first function to process
the video is discussed, how to transfer a large video file
between functions is also missing. This paper fills the gap
between the ICN-FC proposal and real implementation.

III. NDN FUNCTION CHAINING (NDN-FC)
ARCHITECTURE

A. Interest Packet Format

In NDN-FC, we have added a Function Name field to the
Interest packet format from the original packet format. In this
field, the chain of functions will be listed. The result is shown
in Fig. 3. The Data packet will be kept the same as the original
packet format.

Interest Packet
Content Name
Function Name
Nonce
Interest Lifetime
Forwarding Hint

Fig. 3. NDN-FC Interest Packet Format

In contrast to ICN-FC, in NDN-FC, the Content name
will be kept static. Instead, the Function Name field will be
responsible for forwarding Interest packets to functions. The
reason behind keeping Content names static is to allow easier
packet tracing for troubleshooting purposes, and prevent the
Content Name from becoming overly complex.

B. NDN-FC Basic Architecture

For basic NDN-FC forwarding, we will use a similar method
to ICN-FC. Function flow will be set in the Function Name
field. Functions will be separated by / symbol. After the
Interest packet passes through a function, that function will
be removed from that field. It is possible to register function
names in the FIB, which will forward Interest packets. If
there are no functions specified, the Interest packet will be
forwarded by the Content Name. Therefore, the Content Name
will effectively represent the parameter for the first function.
It should be noted that the functions will be executed in the
reverse order of the Function Name field, since the Data packet
goes in the reverse order of the Interest packet. An example
of NDN-FC is shown in Fig. 4.
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Fig. 4. NDN-FC Example
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IV. IMPLEMENTING NDN-FC
A. ndn-cxx Extension

ndn-cxx is a C++ library, implementing NDN primitives that
can be used to implement various NDN applications [6].

In order to support NDN-FC, the Interest packet format must
be modified. This only requires the Function Name field to be
added. Fig. 3 from Section III will represent what the packet
format will look like. The basic structure of the Content Name
field will be used for the Function Name field.

B. NFD Extension

NDN Forwarding Daemon (NFD) is the core component
of NDN, and is responsible for routing NDN packets. We
extended NFD to support edge computing and SFC.

1) Function Forwarding Strategy: Using the strategy API
of NFD, we created a new forwarding strategy for function
chaining. The basic flow of the strategy is shown in Fig. 5.
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Fig. 5. NDN-FC Forwarding Strategy

For NDN-FC we will use the afterReceivelnterest trigger,
which fires after NFD receives an Interest packet. In this
strategy, when afterReceivelnterest is triggered, the Function
Name field will be checked using hasFunction described in
Section IV-A. When an Interest packet is received by NFD,
i.e., router, NFD checks the Function Name filed in the Interest
packet. If the packet has a Function Name, the Function Name
will be retrieved. If the Function Name field is empty, the
Content Name will be retrieved. Since the Content Name and
Function Name fields are similar in structure, the Forwarding
Information Base (FIB), which holds routing information, does
not need to differentiate between the two to do a FIB look-up
for packet forwarding. When a matching entry is found, the
Interest will be sent out to the corresponding interface, or face
in NDN term.

2) PIT In-record Sequence Numbers: The difference be-
tween functions and consumers/producers is that it both sends
and receives Interest and Data packets. On the contrary,
consumers only send Interest packets and receive Data packets.
Producers only receive Interest packets and send Data packets.
From a technical stand point, a function is a combination of a
consumer and a producer. However, this brings up a problem
with the Pending Interest Table (PIT), which holds the reverse
path of Interest packets to their original sender, i.e., consumer,
while using our proposed architecture. When an Interest packet
goes through a function node, it enters the NFD router of that
node twice. The path of an Interest packet is shown in Fig. 6.

The problem is that the PIT records two in-records(() and
@ in Fig. 6) linked to a single PIT entry, i.e., a single Content
Name. This is problematic because when the Data packet
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Fig. 6. Interest Packet Path

corresponding to the Interest packet is returned, it will be sent
out to both faces at once. This is shown in Fig. 7.

Function Process

Function
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Fig. 7. Data Packet Path

This causes the non-processed Data packet to reach the
consumer first. Furthermore, the PIT entry will be satisfied
and deleted, so the processed Data packet (from the function
process) will not have a PIT entry to refer to; therefore
making it incapable of reaching the consumer. To overcome
this problem, sequence numbers for in-records is applied. Each
time an in-record for a PIT entry is created, it will be given a
sequence number, which starts at 1 and increments by 1 every
time the Interest packet with the corresponding Content Name
is forwarded.

After a Data packet is received and a PIT entry is found,
NFD will search for the in-record with the largest sequence
number, and send it out to that face. This will ensure that
the Data packet will go in the reverse path of the Interest
packet. If the largest sequence number is anything larger than
1, it will not delete that PIT entry. In other words, the PIT
entry will only be deleted after the last remaining in-record is
satisfied. This will prevent non-processed Data packets from
going to the consumer, and it will prevent the PIT entry from
being removed until the processed Data packet is returned.
Fig. 8 shows a simple example of how sequence numbers work
when an Interest packet is received, and Fig. 9 shows a simple
example of how sequence numbers work when a Data packet
is received.
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Fig. 9. Sequence Number Data Packet Example

V. FUNCTION IMPLEMENTATION

When a function process receives an Interest packet, it
will forward the interest packet back to NFD. This step is
required for creating a PIT in-record for the function, which
will later be used by the Data packet. When the function
process receives a Data packet, it will check the Final Block
ID to see how many Data packets to expect. When all Data
packets are received, it will reassemble the content. After
the reassembly is done, it will execute the function using
the content as the parameter. When the function execution
is complete, the outcome will be segmented again, and sent
towards the consumer. In short, the function will reassemble,
execute, and segment.
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Fig. 10. Function Implementation

VI. CONSUMER PRODUCER API EXTENSION

Consumer Producer API is a module to provide “a new
network programming interface to NDN communication pro-
tocols” [7]. If NFD is the network layer, Consumer Producer
API would be the application layer. The main benefits of the
Consumer-Producer API are that it creates an easy interface for
deploying consumers and producers, it handles data segmenta-
tion/reassembly, and it comes with multiple retrieval methods.

Most content will not fit into a single Data packet. There-
fore, segmentation and reassemble is inevitable for making a
effective network. We will extend the Consumer Producer API
to support NDN-FC.

In the original architecture of Consumer Producer API, the
consumer initially sends only 1 Interest packet, and will send
the remaining Interest packets after receiving the Final Block
ID. However, for NDN-FC, we will need to reassemble the
content at the Function Node. This means that sending only
1 Interest packet will not work, since the function needs all
Data packets to start execution. Therefore we will change the
architecture in the following way. A simple example is shown
in Fig. 11.

1) The Final Block ID will be requested prior to the
communication. For example, the consumer could send
out an Interest packet named /fest/file/info to obtain the
Final Block ID of content test/file.

2) Using the Final Block ID, the consumer will send all
Interest packets.

3) When the producer receives all the Interest packets, it
will send out all of its Data packets.

4) The function will process the content, and return the
result to the consumer.
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Interest: /test/file/00
Interest: /test/file/01
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Data: /test/file/01
Data: /test/file/02
Data: /test/file/03

® ®

Fig. 11. NDN-FC Consumer Producer API Example

However, this is flawed in the sense that it does not account
for content size change at functions. After a function is
executed, it is likely that the content’s file size will change.
In other words, the segment count is susceptible to change.
Therefore, the Interest packet count will have to accommodate
for the new segment count. There are 2 possible ways that
segment count can change, and they are listed below.

e Less than the original segment count

o Greater than the original segment count

1) Less than the Original Segment Count: When the new
segment count is less than the original segment count, no
changes are necessary. This is because all necessary PIT
entries for sending Data packets are available. An example
is shown in Fig. 12.

In this example, the original content has three segments.
After the function execution, it becomes two segments. How-
ever, the PIT has the required entries, /fest/00 and /test/01, for
sending to be successful. When the consumer receives /test/00,
it will extract the Final Block ID, which in this case is 1, so it
knows that the new content is two segments instead of three.
The remaining PIT entry for /fest/02 will eventually expire and
be deleted.

2) Greater than the Original Segment Count: To support
the case where the new segment count is greater than the
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Fig. 12. Example of Content Size Shrink

original segment count, several functionalities must be added.
This is because Data packets with Content Names that do not
exist in the PIT must be created. To do so, additional Interest
packets must be sent to that function. This is achievable
through the following way. An example is shown in Fig. 13.

1) After the function is executed, the new Final Block ID
is recorded in the newly created Data segments.

2) The same amount of segments as the original segment
count are sent out.

3) Consumer and functions keep track of the number of In-
terest packets sent and know the original Final Block ID.
When the consumer/function receives the Data packets
with the updated Final Block ID, it compares it with the
original one.

4) The consumer/function will send out the additional
Interest packets.

5) The PIT will have the new Interest packet inserted.

6) The function returns the remaining Data packets.

/test/00
[test/01
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Fig. 13. Example of Content Size Expansion

In the example in Fig. 13, the original Final Block ID is
1. However, after the function execution, the Final Block ID
becomes 2. Now the function will send Data segments /test/00
and /test/01 only, since they are the only ones available in
the PIT at the moment. When the consumer/function receives
these Data packets, it will extract the Final Block ID, and
compare it with the original Final Block ID. In this case,
the new Final Block ID is 2, and the original is 1. It needs

to send an Interest packet for /fest/02. When it reaches the
function, the PIT entry for it will be added. Now the Data
segment /fest/02 has a corresponding PIT entry, so it will be
sent. The consumer/function will now have all segments for
the processed content.

In this way, we are able to fully implement NDN-FC with
segmentation/reassembly.

VII. TEST AND RESULTS
A. Scenario

To confirm the correctness of the proposed segmentation
handling, “greater than the original segment count” case was
tested. The test configuration is shown in Fig. 14.

Consumer Function Producer

Fig. 14. Implementation Testing Scenario

Each of consumer, function, and producer, was run on
its own virtual machine or docker container. Table I shows
the versions of the software used in this experiment. The
producer has a piece of content with the Content Name of
/test/producer/test.png. The function is named as /A, and the
consumer sends Interest packets out for the content located
at the producer. The producer provides the Final Block ID of
test.png by requesting /test/producer/info.

The function processes this image file test.png into a larger
sized file. To simulate this function execution, we prepared
two files with the sizes of 15.4kB and 56.9kB. The function
processes the 15.4kB file into a 56.9kB file.

TABLE 1
EXPERIMENTAL ENVIRONMENT

version
Viutualbox 6.0.12
Ubuntu 16.04
Docker 19.03.1

B. Results

Here we show the output of our test when using the docker
version in Figs. 15 ~ 18. It should be noted that due to the
length of the output, only the important parts are shown.

The consumer first sends out an Interest packet to get the
Final Block ID, which in this case is 8 (Fig. 15 (D). Next, the
consumer sends out 9 Interest packets all with the Function
Name field set to /A ((2).

Fig. 16 shows that the producer received these Interest
packets, and sent out the Data packets. The buffer size shows
that the image was 15.4kB, which is equal to 9 segments (Final
Block ID: 8).

Fig. 17 shows that the function /A received the Data packets
from the producer. It reassembles the content (buffer size
15.4kB), and processes the image. The post-process image is
56.9kB, which has a Final Block ID of 33. Since the first 9



Fig. 16. Producer Output

Data packets were already received by the consumer as seen
in Fig. 15, the consumer knows the new Final Block ID of
33. Now the consumer knows the new Final Block ID and
sends out Interest packets with segment numbers 9 through
33 (Fig. 15 (3)).

Fig. 17. Function Output

Finally, Fig. 18 shows that the consumer received all 34
segments that came from function /A.

Fig. 18. Consumer Output (Data Packet Reception)

From these results, it can be seen that NDN-FC was
successfully implemented with proper segmentation.

C. Comparison of virtual machine and Docker container

To compare the startup time of functions in NDN-FC in
two environments: virtual machine and Docker container, we
created virtual machine implementation in addition to Docker
implementation. As the startup time of a function in Docker
container, we measured the time to startup a Docker container
of a function from its image using “Measure-Command”
command in Windows PowerShell. The startup time of a
virtual machine of a function is calculated from the startup

log which can be displayed with “dmesg” command. Table II
shows the results of five measurements with 3072MB of
memory allocation. From Table II, we can be confirmed that
the startup time of Docker container is shorter.

TABLE I
STARTUP TIME COMPARISON

number | docker container startup time(s) | VM startup time(s)
1 4.831765 62.47054
2 2.869693 47.32371
3 2.591142 50.25787
4 2.723558 46.92482
5 2.753842 45.98574

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the necessity of func-
tion chaining especially in IoT environments. We have also
proposed an architecture for supporting function chaining in
NDN for IoT environments. While many previous researches
use simulations to show proof-of-concept, we have focused
more on real-world usability by implementing and testing on
real machines. We believe segmentation is an important aspect
of real-world application and have focused on implementing
segmentation into NDN-FC using existing NDN software.

Many functions may be deployed on the fly in the environ-
ment providing function chaining. The resources consumed
by each function in such an environment should be minimum
not to exhaust resource at a node. To support the minimum
resource consumption with on-the-fly deployment of functions,
container technology such as Docker is a viable alternative.
The lightweight characteristics of the container technology can
be exploited to support load balancing in function execution.

Our future work includes implementing push type NDN-
FC, and testing with more complex scenarios. Our test results
show that segmentation properly works with a basic network
structure, but further work with scalability may be required. As
a final product, we would like the network to intelligently place
functions, and orchestrate functions according to network load
and congestion.
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