
Implementation of NDN Function Chaining Using Caching for
IoT Environments

Yohei Kumamoto
Waseda University

Tokyo, Japan
yoheimmtw@akane.waseda.jp

Hidenori Nakazato
Waseda University

Tokyo, Japan
nakazato@waseda.jp

ABSTRACT
In this paper, we discuss how to implement a mechanism that com-
bines function chaining and cache in Named Data Networking
(NDN), an incarnation of information centric networking technol-
ogy, for real-world IoT environments. We explain our new archi-
tecture, called NDN-FC+, for combining function chaining with
cache over NDN, and how to extend existing NDN software to
support function chaining and caching. The key features discussed
in this paper are Interest and Data packet structure, forwarding
methods, and naming schemes for a cached content. In particular,
it is important to implement the cache, which is one of the major
features of NDN. By using the cache, the network will be able to
keep contents closer to the users and send them with low latency.
Also, by combining function chaining and caching, and caching the
content that has been processed by several functions in advance,
it will be possible to communicate the processed content without
processing. The feasibility of our proposed protocol for caching and
forwarding methods is displayed through a prototype implementa-
tion. The performance evaluation was performed in a topology that
executes the functions chained to the image data from the sensor,
assuming use in the real world IoT environment.

CCS CONCEPTS
• Networks→ Naming and addressing; In-network process-
ing; Routing protocols.

KEYWORDS
NDN, function chaining, IoT, caching

ACM Reference Format:
Yohei Kumamoto and Hidenori Nakazato. 2020. Implementation of NDN
Function Chaining Using Caching for IoT Environments. In Cloud Con-
tinuum Services for Smart IoT Systems (CCIoT ’20), November 16–19, 2020,
Virtual Event, Japan. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3417310.3431401

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCIoT ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8131-4/20/11. . . $15.00
https://doi.org/10.1145/3417310.3431401

1 INTRODUCTION
In recent years, the number of IoT devices have been increasing
rapidly. Consequently, there has also been a growth in IoT appli-
cations and services, many of which require low latency such as
factory automation and autonomous driving.

In response to this, edge computing has been proposed. Edge
computing processes data by computing infrastructures placed
closer to the source of the data, and provides results in a short time.
It is more efficient in terms of time and resource usage compared
to sending data out to a cloud [6]. However, the problem with the
current edge computing is its heavy reliance on the edge computing
resources adjacent to the sources of the data.

As a solution to this problem, we apply the idea of Service Func-
tion Chaining (SFC). With SFC, users can control traffic through
software to route packets to the desired network services, which
creates a virtual chain of network services [5]. We use this idea
and place computing resources throughout the network, and run
functions on them to process IoT data. By chaining these functions,
data can be processed in a sequential manner to obtain the de-
sired output. We can also strategically and dynamically place these
functions to prevent and relieve network congestion and load. In
order to achieve this, we adopted a communication protocol called
Named Data Networking (NDN) [8]. NDN routes data by Content
Name as opposed to the traditional IP, which routes according to
location. This will allow a more intuitive and simple management
of chained functions. In addition, NDN routers can cache content.
By combining function chaining and the features of caching, con-
tent can be cached after application of functions. In this way, we
can obtain the desired output with less function processing and
with even shorter response time. This architecture that combines
NDN and SFC provides us the flexibility to choose an appropriate
function instance out of many available instances with the same
functionality and name. By combining SFC and NDN we can make
a more efficient IoT network.

In this paper we will discuss how to extend NDN to support
function chaining and in-network processing. Content in this paper
means the equivalent of Data.

2 RELATEDWORKS
L. Liu et al. [2] proposed a solution called ICN Function Chaining
(ICN-FC), which is an Information-Centric Networking (ICN) based
framework for function chaining. It uses the← symbol to connect
functions within the Interest name. A simple example is shown in
Fig. 1.

In this example,A and B represent functions, andData represents
the producer where the required data is located. In order to chain
functions, the Interest name will be set to /A←/B←/Data. Each

20

https://doi.org/10.1145/3417310.3431401
https://doi.org/10.1145/3417310.3431401
https://doi.org/10.1145/3417310.3431401

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Yohei Kumamoto and Hidenori Nakazato

Figure 1: ICN-FC Example

time the Interest packet passes through a function, that function
will be removed from the namespace. By removing the function
from the namespace, it is possible to dynamically change the route
of the Interest to a different function.

ICN-FC is evaluated assuming video processing. Although the
segmentation / reassembly between the source of a video and the
first function to process the video is discussed, how to transfer a
large video file between functions is also missing.

H. Yoshii extends NDN to support function chaining. This NDN
extension is called NDN-FC [1, 7]. NDN-FC takes content segmenta-
tion in consideration as a part of its mechanism. Typically, a content
is split into segments to be transmitted. Splitting is necessary be-
cause the content may not fit into a packet if the size of the content
exceeds the maximum size of a packet. NDN-FC reassembles the
segments to reconstruct the content before applying a function to
the content. To reassemble the requested content, the consumer
which is the node requesting the content first obtains the number
of segments of the content. The number is called Final Block ID.
The consumer sends Interest packets up to the number expressed
by the Final Block ID to the producer all at once. Producer is a
node supplying content. Data packets requested by the number of
Interest packets arrive at the function all at once. The function can
reassemble segments and reconstruct the content in this way.

In NDN-FC, consumers, producers, and functions are considered
as applications, and NDN Forwarding Daemon (NFD) is used as the
router [4]. In addition, the cache is disabled in this implementation
to make sure the execution of functions in the chain. An example
communication in NDN-FC is shown in Fig. 2. Segmented content

Figure 2: NDN-FC Example

in the figure is handled as follows.
(1) The consumer sends out an Interest packet with content

name /test/file/info to obtain Final Block ID of content with
its name /test/file. Final Block ID is the number of segments
of the content.

(2) Using the Final Block ID, the consumer transmits all Interest
packets required to retrieve the entire content.

(3) The producer holding the request content sends out Data
packets with segmented content.

(4) When all Data packets arrive at the function /A, the function
reconstructs the content from the received data segments,
and executes processing on the obtained content.

(5) The content after executing the function is segmented again
and sent to the consumer. If the size of the content becomes
large than the original size, the function requests the con-
sumer for additional Interest packets.

In NDN-FC, Function Name field was added to the Interest packet
format from the original packet format [3]. In this field, the chain of
functions is listed. For example /A/B/C in the Function Name filed
means, the consumer sending this Interest packet want to apply
functions /C, /B, and /A in this order on the content specified in the
Content Name filed. When the Interest packet passes through the
function /A, the function name is removed from the Function Name
field and sent out to the next router. That is, the Function Name
field of the Interest packet becomes /B/C. The modified Interest
packet format is shown in Fig. 3. The Data packet is kept the same
as the original packet format.

Original NDN-FC

Content Name

Function Name

Nonce

Interest Lifetime

Forwarding Hint

Content Name

Nonce

Interest Lifetime

Forwarding Hint

Figure 3: NDN-FC Interest Packet Format

When an Interest and Data packet goes through a function node,
it enters the NFD, the router at the node, twice. The path of an
Interest and Data packet is shown in Fig. 4.

Function Process

NFD
Data Packet

Interest Packet

Function Node

Figure 4: Interest and Data Packet Path in NDN-FC

When a function receives an Interest packet, it will forward the
Interest packet back to NFD in order for the Interest packet to be
forwarded to the next function or to the producer of the requested
content. This step is required for creating the return path for the
corresponding Data packet. Faces that come in the first and second
times of the same Interest packet are distinguished by assigning a
sequence number to each. 1 is given to the first face and 2 is given
to the second arrival. When the NFD receives the Data packet, it
sends the Data packet to the face with the largest sequence number.

21

Implementation of NDN Function Chaining Using Caching for IoT Environments CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

This will ensure that the Data packet will go in the reverse path of
the Interest packet in NDN-FC.

When the function receives a Data packet, it will check the Final
Block ID in the Data packet to see howmany Data packets to expect
before further forward the Data packet. When all Data packets for
a content are received, the function reassemble the content. After
the reassembly is complete, the function apply its processing on
the content. When the function execution is complete, the outcome
is segmented again, and sent towards the consumer.

This implementation does not expect to make use of the cache. In
the next chapter, we will show the problems caused by enabling the
cache and propose a method to solve problems in enabling cache.

3 NDN-FC+
We are proposing a system that makes use of caching capability
while supporting function chaining in NDN environment. We call
the systemNDN-FC+.NDN-FC+ is an extension of NDN-FC to make
the system exploits caching capability of NDN.

Consumers can retrieve contents from a node closer to them
by using cached Data packets in NDN. Since a Data packet after
application of functions can also be stored in a cache in NDN-
FC+, some function processing can be omitted in processing of
function chains by making use of cached Data packets and low-
delay function chain processing can be realized. A simple example
is shown in Fig. 5.

Figure 5: Example of Using Cache

Content Store (CS) is a router component that caches Data pack-
ets in NDN. In the example in Fig. 5, the CS in the router hosting the
function named /A stores the Data packet with content /text/file
after application of three functions: /A, /B and /C on the content.
Here, function /C is applied first and function /A is applied last. In
this state, if the consumer sends Interest packets requesting con-
tent /text/file and applying functions /C, and /B and /A on it in
that order, i.e., the Function Name field set as /A/B/C,the Interest
packets hit this cache and the Data packets are sent back immedi-
ately without forwarding farther. Since NDN-FC+ is an extension
of NDN-FC, NDN-FC+ uses the same Interest packet format as
NDN-FC.

If we simply enable cache in NDN-FC, a problem will be encoun-
tered. In NDN-FC, one Data packet enters the same router twice:
once for receiving the packet from another router and once for
receiving from a function as shown in Fig. 4. However, the content
name is the same for the Data packet before and after the func-
tion execution. As a result, the Data packet after application of the
function is not cached. NDN-FC+ solves this problem.

3.1 Packet Format Extension
Interest packet format has been extended from the original NDN
format in NDN-FC. NDN-FC+ requires further extension in packet
format, this time, the format for Data packet. It is necessary because
Data packets need to show what functions have been applied to
the content carried by the Data packet in order to cache the packet.
The extension is addition of Function Name field to the Data packet
format in NDN-FC which is the same as the original NDN packet
format. The names of the executed functions will be listed in this
field. The Data packet format in NDN-FC+ is shown in Fig. 6.

Original NDN-FC+

Name

Function Name

MetaInfo

Content

Signature

Name

MetaInfo

Content

Signature

Figure 6: NDN-FC+ Data Packet Format

3.2 Packet Forwarding Procedure
In NDN, the Pending Interest Table (PIT) is a router component
that is responsible for keeping track of pending Interest packets by
recording the incoming faces of each Interest packet and sending
Data packets back to the consumer. Also, the Forwarding Infor-
mation Base (FIB) is a router component that is responsible for
forwarding Interest packets to their corresponding data sources as
a routing table.

In NDN-FC+, a PIT entry has a Function Name field in addition
to a Content Name field and Incoming Face field of original NDN.
In NDN-FC+, Interest packets before and after passing a function
are not distinguished by the sequence number as in NDN-FC. In-
stead, they are distinguished by the two names: Content Name and
Function Name in the PIT entry. Interest packets are processed as
follows.

(1) When an Interest packet is received by a router, NFD, the
router searches its PIT for the content name and the func-
tion name in the Interest packet. If a match is found, the
incoming face of the Interest packet is added to the found
entry, the Interest packet is discarded, and processing ends.
If a matching entry is not found, a new entry is inserted
with the content name, function name, and incoming face
information.

(2) The router searches the CS for the Data packet with the same
Content Name field and Function Name field as the received
Interest packet. If a matched CS entry is found, the cached
Data packet is returned, the Interest packet is discarded, and
processing ends.

(3) If functions are listed in the Function Name field in the
Interest packet, the router searches the first function name
in the list as a name in the FIB. If a match is found, the Interest
packet is forwarded to the face specified in thematched entry.
If Function Name field of the Interest packet is empty, the

22

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Yohei Kumamoto and Hidenori Nakazato

router searches its FIB for the name in the Content Name
field.

(4) Every time the Interest packet passes through the function
specified in the Function Name field, the function name
corresponding to the function is deleted from the Function
Name field.

(5) When the Interest packet is received by a producer, a corre-
sponding Data packet is returned, and processing ends.

In NDN-FC+, Data packets, which trace the route that the Interest
packets have taken in reverse order, are processed as follows.

(1) When aData packet is received by a router, the router searches
the PIT for the content name and the function name in the
Data packet. If a matching entry is not found, the Data packet
is discarded, and processing ends. If a matching entry is
found, the Data packet is sent out to the face recorded in
the entry and the entry is removed. At this time, the Data
packet is cached in the CS.

(2) When a Data packet is received by a function process, the
function wait until all Data packets necessary to reconstruct
the content of the Data packets. The number of Data packets
to wait can be know by the Final Block ID included in the
first Data packet of the content. The function is applied on
the reassembled content. After applying the function, the
content is segmented again to Data packets and sent to the
router hosting the function. The function name is prepended
at the front of the Function Name field of each Data packet.

(3) When a Data packet is received by a consumer, the consumer
waits all Data packets and reassembles the content of the
Data packets.

3.3 Content transfer among consumer,
producer, and functions

A content does not fit in a Data packet, typically. To retrieve a
content, many Interest and Data packets are exchanged between a
consumer and a producer in the original NDN. There themechanism
to inform Final Block ID is used to transfer a content involving
multiple Data packets. Final Block ID is a value to specify the
number of Data packets to be used to transfer a content. When
the first Interest packet requesting a large content is received by a
producer, the producer returns a Data packet containing the Final
Block ID of the content as well as the first segment of the content. In
the original NDN, this exchange of the Final Block ID involves only
a consumer and a producer. Since application of a function requires
entire content to be received before application of the function, the
function need to participate in the exchange of the Final Block ID.

Functions perform the following procedure to collect necessary
Data packets, apply the functions, and transfer back the result to
the consumer.

(1) Receive the first Data packet of a content and find its Final
Block ID.

(2) Transmit as many Interest packets as < Final Block ID > −1.
(3) Receive all Data packets
(4) Reconstruct the content
(5) Apply the function on the content
(6) Segment the result
(7) Transmit the first Data packet of the result

(8) Wait for the following Interest packets and transmit the
corresponding Data packets

Since Interest packets are propagated through functions requested
by the Interest packets, the first Data packet sent out from the
producer is received by the first function from the producer in the
chain. The function can find the Final Block ID of the content in
the first Data packet. The function autonomously creates Interest
packets requesting the rest of the content using the Final Block ID.
By doing so, the function can receive all Data packets necessary to
reassemble the content. Then, the function applies its function on
the content, segments the result, and prepare Data packets of the
result. Since the first Interest is already received by the function,
the first Data packet is returned and wait for the additional Interest
packets. When they are received, the rest of the Data packets are
returned.

Fig. 7 shows an example of communication by this method. The

Consumer

Process

NFD

Function /A

Process

NFD

Function /B

Process

NFD

Producer

Process

NFD

Final Block ID: 5

S
e

n
d

 5
 In

te
re

s
t

S
e

n
d

 6
 In

te
re

s
t

S
e

n
d

 7
 In

te
re

s
t

New Final Block ID: 6New Final Block ID: 7

Figure 7: Interest Packet Flow Example

function /B receives the Final Block ID 5 in the first Data packet
from the producer. The function transmits the remaining four Inter-
est packets to the producer and receive all Data packets necessary
to reconstruct the content. After applying the function, the con-
tent size increases and now the Final Block ID for the content is 6.
Function/B returns the first Data packet with its Final Block ID 6 to
the next function /A. Function /A creates and transmits additional
five Interest packets to function /B. As is shown in this example,
necessary Interest packets are sent between adjacent functions
as needed. As a result, all Interest packets are not sent from the
consumer to the producer all at once unlike.

4 EVALUATION
4.1 Scenario
To confirm the correctness of the proposed method, the configura-
tion shown in Fig. 8 is used. We have created 5 virtual machines

Figure 8: Implementation Testing Scenario

in VirtualBox where each machine resembles a consumer, function

23

Implementation of NDN Function Chaining Using Caching for IoT Environments CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

/A, function /B, function /C and producer. NFD will be run on each
machine. If we enable caching of the NFD on each machine, the
NFD will cache all Data packets that pass through it in the CS and
remove the elements (when the CS is full) according to the LRU
policy. The producer supplies the image data from the camera with
a content name “/test/producer/test.jpg.” The consumer transmits
Interest packets with Function Name field “/A/B/C” to the producer.
Function /C detects all humans from the image data received from
the producer, and outputs its position information in the image
data and the encoded information of the image in text format. We
have created Function /C based on YOLO, one of the real-time ob-
ject detection software. Function /B decodes the image data in text
format received from function /C, and cuts out only the part of the
image data showing the person based on the position information
of the person. Furthermore, function /B encode the cut image data
into again text format, and pass to function /A. Function /A cal-
culates the number of cut images (humans) based on the received
information in text format, and sends that number of humans and
image encoded into text format to the consumer.

In this scenario of Fig. 8, we tested that a Data packet sent back
by a cache hit is properly processed by function chaining and de-
livered to the consumer. In addition, we show the performance
improvement from NDN-FC by the proposed method by measuring
the communication time when the caches of the nodes hosting the
functions /A, /B, and /C are used.

4.2 Behavior of each component
We enabled the cache only in the router hosting function /B. Then,
in order to fill the cache, we let the consumer obtains the content
with function execution in the order of /C→ /B→ /A in advance.
After this preparation, we tested the operation of cache by sending
the Interest packet with the content name of the camera image
and Function Name field /A/B/C from the consumer. The result is
shown in Figs. 9 ∼ 11. It should be noted that due to the length of
the output, only the important parts are shown.

Fig. 9 is a router log of the router hosting function /B. In the log,
we can see the CS is being searched for the content name and the
function name “/B/C.” In this implementation, the search string is
“/test/producer/content/test.png /<segment number>/B/C”
which is the content name with the function name attached at the
end of the content name. Then, when an Interest packet comes in,
it simply searches the concatenated name in the CS.

Fig. 10 is the output of function /A in the scenario. From this
output, it can be confirmed that the Data packet of segment number
00 is received by function /A, the function obtains the Final Block
ID from the Data packet, and the additional Interest packets are
transmitted (Fig. 10 1○). After the transmission of Interest packets,
the function receives all the Data packets and executes the function
using the contents obtained by reassembling the Data packets (Fig.
10 2○). After finishing the execution of the function, this function
again segments the content and transmits the content to the con-
sumer. The content size which is 13.842kB before applying function
/A becomes 14.514kB after applying function /A.

Fig. 11 shows the output of the consumer. From this output,
we can see the consumer is sending the first Interest packet for a
content with the segment number 00 first (Fig. 11 1○). Return to

Figure 9: Output of Router Hosting Function /B

Figure 10: Function /A Output

the first Interest packet, the Data packet of segment number 00 is
received from function /A (Fig. 11 2○). Then, the final block ID is
obtained from the Data packet, the rest of the Interest packets are
transmitted (Fig. 11 3○), and that all the Data packets are received
(Fig. 11 4○). Finally, the consumer reassembles them to obtain the
content where the functions /C, /B, and /A are applied.

From these results, it can be seen that NDN-FC+ is implemented
properly.

24

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Yohei Kumamoto and Hidenori Nakazato

Figure 11: Consumer Output

4.3 Content acquisition time comparison
We measured the time required for a consumer to retrieve contents,
or content acquisition time, with and without using the cache. The
time the consumer sends the first Interest packet with segment
number 00 is set to time 0. Time is counted until the consumer
receives the last Data packet and the content is reassembles.The
following cases are compared.

(1) All the caches are disabled.
(2) Only the cache of the router hosting function /C is enabled.
(3) Only the cache of the router hosting function /B is enabled.
(4) Only the cache of the router hosting function /A is enabled.

In all cases, the content to be transferred is unified with the image
data of 18.140 kB, which is the image of only one person, before the
execution of the function. Also, before starting the measurement,
one request on the content with execution of functions /C, /B, and
/C is performed to populate the caches. The one request involves
many Interest and Data packets because the content is large. In
each of the above four cases, 100 measurement was performed and
the average was taken. The result is shown in Table 1.

According to Table 1, content acquisition time is shorter when
using cache. In particular, the time is greatly shortened between the
case where the cache is not used and the case where the cache of the
router for function /C is enabled. This is because the execution time
of function /C is longer than other functions, and the execution
time of function /C can be saved by the cache. Likewise, when it
takes time to execute a function, by caching the Data packet after
application of the function, the time is greatly improved. Of course,
the content acquisition time for the case where Data packets after
application of all the functions are cached is the shortest, but even
when the intermediate results are cached the content acquisition
time can be greatly shortened.

Another reason the content acquisition time is shortened is that
the content can be obtained from the node closer to the consumer
and some network delay can be eliminated. As a consequence,
network traffic can be reduced.

Table 1: Content Acquisition Time

case time(ms)

without cache 112242.74
/C cache 970.09
/B cache 241.87
/A cache 81.14

5 CONCLUSION AND FUTUREWORK
In this paper, we have discussed the necessity of combining func-
tion chaining with caching in IoT networks. We have also proposed
an architecture that support function chaining and caching in NDN.
The performance evaluation in this paper showed us the effective-
ness of our proposed mechanism NDN-FC+.

Our future work includes testing with more complex scenarios.
Our results show that caching properly works with a basic network
structure, but further work examining scalability may be required.

In addition, as a future extension of this work, we are going to
consider an architecture that caches the latest content from IoT
devices on nodes near consumers. In this architecture, nodes that
send periodic interest packets to IoT devices are deployed close to
consumers. As a result, it is considered that the latest content from
an IoT device such as a sensor whose content is updated as time
elapses is always cached in a node near consumers and consumers
can obtain that cached content with low latency. This architecture
will allow us to make more efficient IoT networks.

ACKNOWLEDGMENTS
The research leading to these results has been supported by the
EU-JAPAN initiative by the EC Horizon 2020 Work Programme
(2018-2020) Grant Agreement No. 814918 and Ministry of Internal
Affairs and Communications “Strategic Information and Communi-
cations R& D Promotion Programme (SCOPE)” Grant no. JPJ000595,
“Federating IoT and cloud infrastructures to provide scalable and
interoperable Smart Cities applications, by introducing novel IoT
virtualization technologies (Fed4IoT).”

REFERENCES
[1] Yohei Kumamoto, Hiroki Yoshii, and Hidenori Nakazato. 2020. Real-World Imple-

mentation of Function Chaining in Named Data Networking for IoT Environment.
In 2020 IEEE ComSoc International Communications Quality and Reliability Work-
shop (CQR). 1 – 6.

[2] L. Liu, Y. Peng,M. Bahrami, L. Xie, A. Ito, S. Mnatsakanyan, G. Qu, Z. Ye, andH. Guo.
2017. ICN-FC: An Information-Centric Networking based framework for efficient
functional chaining. In 2017 IEEE International Conference on Communications
(ICC). 1–7.

[3] NAMED DATA NETWORKING. [n.d.]. Interest Packet. Retrieved September 11,
2020 from https://named-data.net/doc/NDN-packet-spec/current/interest.html

[4] NAMED DATA NETWORKING. [n.d.]. NFD Overview. Retrieved September 11,
2020 from https://named-data.net/doc/NFD/current/overview.html

[5] Paul Quinn and Jim Guichard. 2014. Service Function Chaining: Creating a Service
Plane via Network Service Headers. Computer 47, no. 11 (November 2014), 38–44.
https://doi.org/10.1109/MC.2014.328

[6] Weisong Shi and Schahram Dustdar. 2016. The Promise of Edge Computing.
Computer 49, no. 5 (May 2016), 78–81. https://doi.org/10.1109/MC.2016.145

[7] Hiroki Yoshii. 2019. Real World Implementation of Function Chaining in Named
Data Networking. Master’s thesis. School of Fundamental Science and Engineering,
Waseda University.

[8] Lixia Zhang, Alexander Afanasyev, Jeffrey Burke, Van Jacobson, kc claffy, Patrick
Crowley, Christos Papadopoulos, Lan Wang, and Beichuan Zhang. 2014. Named
Data Networking. SIGCOMM Comput. Commun. Rev. 44, no. 3 (July 2014), 66–73.

25

https://named-data.net/doc/NDN-packet-spec/current/interest.html
https://named-data.net/doc/NFD/current/overview.html
https://doi.org/10.1109/MC.2014.328
https://doi.org/10.1109/MC.2016.145

	Abstract
	1 Introduction
	2 Related Works
	3 NDN-FC+
	3.1 Packet Format Extension
	3.2 Packet Forwarding Procedure
	3.3 Content transfer among consumer, producer, and functions

	4 Evaluation
	4.1 Scenario
	4.2 Behavior of each component
	4.3 Content acquisition time comparison

	5 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

