
KadRTT: Routing with network proximity and

uniform ID arrangement in Kademlia

Hidehiro Kanemitsu

School of Computer Science,
Tokyo University of Technology,

Tokyo, Japan

kanemitsuh@stf.teu.ac.jp

Hidenori Nakazato

School of Fundamental Science and Engineering,
Waseda University,

Tokyo, Japan

nakazato@waseda.jp

Abstract—Distributed Hash Table (DHT) has been widely
applied to peer-to-peer (P2P) applications for efficient content
lookup mechanisms. IPFS, one of the distributed systems for
sharing files, websites, and data on a worldwide scale, adopts
Kademlia as one of the DHTs, that is included in libp2p on the
network layer of IFPS. Though DHT-based content lookup can
scale in the number of peers, how to control lookup performance,
e.g., lookup latency and lookup hop count, is one of the issues
for a very large-scale network. Thus, it is necessary to guarantee
both the lookup latency and the hop count even if the network
scale becomes larger.
In this paper, we propose a Kademlia alternative, called

KadRTT, that reduces both the lookup latency and hop count.
KadRTT has two functionalities, i.e., (i) RTT-based lookup target
selection not to increase the maximum hop count, and (ii) uniform
ID arrangement for each k-bucket to shorten the initial ID
distance from content ID. Experimental results by the simulation
show that KadRTT outperforms other Kademlia-based DHTs in
terms of lookup latency and hop count.
Index Terms—Kademlia, DHT, libp2p, RTT, peer-to-peer

I. INTRODUCTION

The current information network requires a large volume

of data, including streaming format, a small chunk of data

arisen from IoT sensor devices, and so on. Peer-to-peer (P2P)

technologies have been spreading out for mainly sharing

the data among users. Since each node (hereinafter, we call

“peer”) interacts with each other without a mediator, it is a

natural consequence that how to address the target location,

including the counterpart peer itself as well as the target

content. In this context, Distributed Hash Table (DHT) has

been widely applied to P2P applications for efficient content

lookup mechanisms. IPFS [1], one of the distributed systems

for sharing files, websites, and data on a worldwide scale,

adopts Kademlia as one of the DHTs, that is included in

libp2p [2] on the network layer of IFPS. Libp2p consists

of many functionalities such as routing, exchange, discovery,

naming, and so on. In particular, the routing functionalities

in libp2p consists of Kademlia [3], S/Kademlia [4] for secure

routing, and Coral DSHT [5] for regional and hierarchy-based

DHT. Though DHT-based content lookup can scale in the

number of peers, how to control lookup performance, e.g.,

lookup latency and lookup hop count, is one of the issues for

ISBN 978-3-903176-39-3 c©2021 IFIP

a very large-scale network. Thus, it is necessary to guarantee

both the lookup latency and the hop count even if the network

scale becomes larger. One idea for optimizing the lookup

latency is a proximity-based lookup [6] for optimizing the

RTT for each hop. However, if the ID distance between the

content ID (CID) and the target peer ID is made larger than

the original distance (i.e., shortest ID distance), the total hop

count can be increased. Thus, criteria for suppressing the hop

count as well as minimizing the RTT for each hop are required.

In this paper, we propose a Kademlia alternative, called

KadRTT, that reduces both the lookup latency and hop count.

KadRTT has two functionalities, i.e.,

(i) RTT-based lookup target selection not to increase the

maximum hop count.

For each iterative lookup, a client tries to send request to

the next hops according to increasing order of RTT if it

satisfies the logarithmic condition:
d(pRT T

i ,CID)

d(pkad
i ,CID)

< 2.
(ii) uniform ID arrangement for each k-bucket to shorten the

initial ID distance from content ID.

KadRTT coordinates each k-bucket in order that each ID

is uniformly distributed not to bias a specific ID range to

suppress redundant lookup hops.

Experimental results by the simulation show that KadRTT

outperforms other Kademlia-based DHTs in terms of lookup

latency and hop count.

II. BACKGROUND

A. Kademlia basics
Firstly we describe the basics of content lookup procedures

of Kademlia as shown in Fig. 1. A client peer is supposed

to receive the content request including the content ID (CID).

Then let the r-th k-bucket be the closest in all k-buckets. To
accelerate the lookup procedures, Kademlia allows concurrent

lookup by defining α as the degree of lookup concurrency.

“FindNode request” message is sent by RPC to α peers

included in the r-th k-bucket, then they return the list of next
hops as “FindNode response”. The number of next hops in a

FindNode response is defined as “resiliency” that we denote

as β. In Kademlia, each peer has a pool to maintain the list of
next hops, and β next hops for each FindNode response are
put into the pool, i.e., in total αβ next hops are put into the



�������	��


�� ���
��


�� ���
��


�� ���
��



 ���
��



�� ���
��



�� ���
��


��	��



�������	��


��	��



��	��


��	��



��	��



�����

����

����������

�������	��


������
��
��	��



��	��



��	��



����������
��


�������	��


��	��



��	��



����

��	��


��	��



��	��



�
��	
���

�����
��
��
��

����

�
�����
�������
��
��
������
���
�
�������������
��
�
�������
��
���
�����
���
���������	����

�����

Fig. 1. Lookup procedures of Kademlia in libp2p.

pool. If the remaining space of the pool is more than αβ, the
αβ next hops are put into the pool; otherwise, each next hop
must be checked whether it has been already asked or not.

If so, the next hop is discarded. When all next hops in the

pool are traced and CID is not found, the client tries to send

FindNode request to the next α peers in the r-th k-bucket.

B. Factors for lookup performance

From lookup procedures presented in Section II-A, we can

observe that α affects the lookup latency, and β affects the
content hit rate and hop count. However, if ether α or β is
increased, the total number of messages in terms of FindNode

becomes larger, thereby the available bandwidth for content

downloading becomes smaller. The literature [7] presents that

α = 3 is an optimal value for taking the balance between the
lookup latency and the number of messages for the specific

network environment. However, such a value depends on the

system condition and we investigate the advantage of KadRTT

with varying both α and β.

As a more critical factor, the initial ID distance between CID

and each peer ID affects the total hop count. Here let define

the ID distance between a peer and CID as d(px, CID), where
px is an entry in the specific k-bucket. Since the bound for

the hop count is log(d(px, CID)), at least such a bound must
not be increased if candidate selection criteria are altered by

other algorithms such as KadRTT.

III. KADRTT ALGORITHM

A. Overview of KadRTT

To address the requirements described in Section II-B,

KadRTT has two points, i.e., (i) hop count-aware RTT-based

lookup to guarantee that the maximum hop count equals that

of original Kademlia, and (ii) ID arrangement for each k-

bucket to make the initial ID distance shorter. In the following

sections, we present details of (i) and (ii), then how to

implement KadRTT is presented.

��������	
��
 ��������	
��
��

���

Fig. 2. Condition for RTT-based lookup

B. Hop count-aware RTT-based lookup

In Kademlia, α peers are selected from the k-bucket with

the specific index, where their peer ID is close to CID. The

problem is that such a selection does not consider the latency

for each lookup. Thus, as a conventional approach such as

R/Kademlia [6] selects α peers according to RTT by ex-

changing peers when each peer receives FindNode responses.

Though each peer in a k-bucket has a shorter RTT than them in

the case of Kademlia, the initial ID distance, i.e., d(px, CID)
may be longer. As a result, the total lookup latency may be

optimized.

In KadRTT, each RTT during a lookup is made shorter by

equalizing the maximum hop count with Kademlia in order

to suppress the total lookup time. Here, we formulate the

difference of the maximum hop count between KadRTT and

Kademlia. Let the client peer as px, and CID is the content

ID. At the i-th iterative hop count, let px determines the s-th
k-bucket record is the nearest among all k-bucket records in

the routing table. Thus, suppose

2s ≤ d(px, CID) < 2s+1. (1)

pkad
i is the entry in s-th k-bucket record selected by Kademlia.

pRTT
i is the one selected by KadRTT. Then we assume

2s ≤ d(px, pkad
i ), d(px, pRTT

i ) < 2s+1,

d(pkad
i , CID) ≤ d(pRTT

i , CID), (2)

because pRTT
i is the selected one by RTT, not by ID distance

such as Kademlia. Fig. 2 shows bounds on the difference in

terms of the ID distance among Kademlia and KadRTT. From

Fig. 2, a bound on the difference in terms of the ID distance

can be formulated as follows. The condition for equality of the

maximum lookup hop count between Kademlia and KadRTT



�����

��	�������	�	��
�
�
�����	

�������

�������

������

������

������

 ������

!������

��������	
���


������������	���
��

�"���#�$��#%&#�'�('%
'%	)��
'��

��(�%*�+��,--�

��"��→��"��→��" �→�!�

��"���→��"��→��"� �→�!�+���.�%�/

+��,--�
�0*�)�,--�
(	%.%1�	%
*�

2

��(�
'��'���3��

�

�

�
�

�
4

5

��������	�	��
����
���
���	�����
�����������������
����
���

������
������������

������


Fig. 3. Problem in RTT-based lookup

is:

log(d(pRTT
i , CID)) − log(d(pkad

i , CID))

= log
d(pRTT

i , CID)
d(pkad

i , CID)
< 1

⇔ d(pRTT
i , CID)

d(pkad
i , CID)

< 2. (3)

Thus, if the above condition is satisfied by selecting pRTT
i ,

the maximum hop count is the same as the one in Kademlia.

Furthermore, RTT for each iterative lookup is reduced by

selecting pRTT
i for each i-th lookup. Thus, in KadRTT, in

the s-th k-bucket, the peer satisfying (3) is selected with the
highest priority for the lookup target.

Though the firstly selected peers have shorter RTT to the

client, the difference between KadRTT and Kademlia is the

lookup order because every entry in the k-bucket is equal

to each other. Fig. 3 shows the effect by varying the lookup

target selection order, where α = 2 and each value in brackets
is the RTT from px. The selection order in Kademlia is

(C, D), (B, E), (A,F ), (G) according to the increasing order
of the distance from CID. We assume that C has the shortest

ID distance from CID and E is the shortest RTT from px.

As for KadRTT, since B and D satisfy the condition defined

at (3), they become the first targets for the lookup. thus, the

lookup order is, (B,D), (C, E), (A,F ), (G). From this result,
we can see that only the lookup order is varied from Kademlia

to KadRTT, thus the difference in terms of the lookup time

depends only on the iteration index. As long as the entry in

the k-bucket is not changed, the lookup time is not drastically

changed.

C. ID arrangement for each k-bucket
In Kademlia, a new entry is added during an iterative lookup

if the k-bucket is not full. That is, the original Kademlia

accepts any IDs and it drops the new entry if the k-bucket

is full. As a result, there is a possibility that many IDs are

located in the specific ID range in the k-bucket and if a CID

is near from a “void” area, the lookup up hop count may take

higher. Thus, it is necessary to make IDs distributed uniformly

in order not to create a void area. At the same time, such IDs

must have short RTTs with the client peer. In KadRTT, if a

new entry pnew having the following condition, is exchanged

with the existing one pold.

Trtt(px, pnew) < Trtt(px, pold),
σ2(bx

s/{pold} ∪ {pnew}) = min
pi∈bx

s

{
σ2(bx

s/{pi} ∪ {pnew})
}

.

(4)

where Trtt(px, pi) is the RTT from px to pi, px is the lookup

client and bx
s is the s-th k-bucket of px. And pold ∈ bx

s . σ2

is the variance in terms of the ID distance among adjacent

peers d(pi, pi+1), where pi, pi+1 ∈ bx
s . In case that a new

peer pnew is being put into the k-bucket, the procedure for (4)

is performed. Fig. 4 shows the result of the ID arrangement

in KadRTT. The ID arrangement procedures start when the k-

bucket is full, i.e., the number of entry is k. If pnew satisfies

the condition of (4), it is switched with pold and thereby each

adjacent ID distance approaches to 2s

k .

D. Implementation
Other than the above presented two functionalities, KadRTT

assumes that each k-bucket entry has the RTT from the client;

that is, the client obtains the latest RTT value for each k-

bucket entry with one of the existing measurement method

for RTT. Since Kademlia does not have any methods for

measuring RTT, additional communication for obtaining the

RTT is needed. In R/Kademlia[6], each peer obtains the RTT

through active PING messages, but the total message number

is increased, thereby the frequency should be adjusted in order

not to affect the available bandwidth. Though KadRTT does

not have any requirements for an RTT measurement method,

RTT should be obtained without depending on Kademlia

protocol for not affecting on findNode procedures. Network

coordinate systems [8], [9], [10], [11].

As for hop count-aware RTT-based lookup in Section III-B,

the target selection criteria for FindNode requests must be

modified. Fig. 5 shows an algorithm for hop count-aware RTT-

based lookup. The parts to be modified are: the client sends

FindNode requests (a) to the selected α peers from the k-

bucket, and (b) to the selected α peers from the pool. Both

cases require the sorted list of next hops by increasing the

order of RTT. Then from the first entries, the logarithmic

condition defined at (3) is checked. If an entry satisfies the

condition, it becomes a candidate for the FindNode target.



�����
�������

���

���	


���	
��
���

��������	
����

��
����������
��
��������

����

�����	
����

����
����

�
�

�
� �
�

��

���


���


����

���

��

������
�	���	���
�����������
�����
	��
�������	
��	��
��
���
��������
	�
��	�����


��������	
��������

�����������������
�����	���������	��������������������

���	


������
�
��
��
��
��������


�
���	����
 �	�
���
�
�

����!��
�!�����"

����������	�
���
�������
��������

��������	
��������

�����������������
�����	���������	��������������������

Fig. 4. ID re-arrangement if KadRTT

�������
	��


�� ���
��


�� ���
��


�� ���
��



 ���
��




��

���
��




��

���
��


��	��



�������
	��


��	��



��	��


��	��



��	��



�����

����

����������

�������
	��


������
��
��	��



��	��



��	��



����������
��


�������
	��


��	��



��	��



�����

��	��


��	��



��	��


�

�����

�

�����

�����
��
��
��
�������	������
�������
��
��
������
���
�
�������������
��
�
�������
��
���
�����
���
���������	����


�����	������
��	����������

Fig. 5. Problem in RTT-based lookup

IV. EXPERIMENTAL RESULTS

In this section, we present experimental results by the

simulation in terms of the lookup latency, hop count, and the

number of messages with varying several factors.

A. Simulation setup
As comparison targets for KadRTT, we selected Kademlia

and R/Kademlia. We compared on OverSim [13] that can sim-

ulate underlay communication as well as overlay. In OverSim,

many parameter can be defined before the simulation, we set

the parameter as shown in Table I.

B. Comparison by varying lookup concurrency
Fig. 6 and 7 show the comparison results with varying

α and β = 1; that is, it is a worst-case in terms of content

TABLE I
SIMULATION PARAMETERS

Parameter Value

� of peers 3000

Sim. Time 500 (s)

Churn model Pareto churn [12]

Lookup concurrency (α) variable

Resiliency (β) variable

k-bucket size (k) 20

Lookup type Iterative lookup

Application type KBRTest



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 2 5 10 15 20

L
o

o
k

u
p

 s
u

cc
es

s 
la

te
n

cy
(s

)

Lookup concurrency

Kademlia

R/Kademlia

KadRTT

(a) Lookup success latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 3 5 10 15 20

L
o

o
k

u
p

 h
o

p
 c

o
u

n
t 

(m
ea

n
)

Lookup concurrency

Kademlia

R/Kademlia

KadRTT

(b) Lookup hop count

Fig. 6. Comparison of lookup by varying α with β = 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 3 5 10 15 20

L
o

o
k

u
p

 s
u

cc
es

s 
ra

ti
o

 (
m

ea
n

)

Lookup concurrency

Kademlia

R/Kademlia

KadRTT

(a) Lookup success ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

1 3 5 10 15 20

F
in

d
N

o
d

e 
m

sg
s/

s

Lookup concurrency

Kademlia

R/Kademlia

KadRTT

(b) FindeNode message �

Fig. 7. Comparison of success ratio and message � by varying α with β = 1.

hit ratio for each α. The comparison results shown in those
figures are lookup latency, hop count, lookup success ratio, and

the number of FindNode messages. From Fig. 6(a), KadRTT

outperforms others, but the difference is slight to R/Kademlia.

At Fig. 6(b), the hop count of KadRTT is almost the same

as R/Kademlia. However, From Fig. 7(a), the lookup success

ratio of R/Kademlia gets worse with increasing α, while the
ratio of KadRTT is stable in all α. Since the selected peers
for FindNode request in R/Kademlia are based on RTT, not ID

distance. Thus, the next hop included in a FindNode response

may not be appropriate in terms of the ID distance. However,

KadRTT imposes the constraint for the ID distance defined by

(3), thereby the ID distance during FindNode procedures can

be made shorter per hop even if β = 1. From Fig. 7(b), the

number of FindNode messages in KadRTT is the smallest,

because the content hit is achieved with shorter RTT and

smaller hop count, thereby the required number of FindNode

messages becomes smaller than that of both Kademlia and

R/Kademlia.

From the obtained results by Fig. 6 and 7, we can conclude:

• If β is too small with varying α, the difference of
both the lookup latency and hop count between KadRTT

and R/Kademlia is slight, but KadRTT outputs a shorter

lookup latency.

• The content hit ratio by R/Kademlia gets worse if α is
larger and β is too small.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 3 5 10 15 20

L
o

o
k

u
p

 s
u

cc
es

s 
la

te
n

cy
(s

)

Resiliency

Kademlia

R/Kademlia

KadRTT

(a) Lookup success latency

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

1 3 5 10 15 20

L
o

o
k

u
p

 h
o

p
 c

o
u

n
t 

(m
ea

n
)

Resiliency

Kademlia

R/Kademlia

KadRTT

(b) Lookup hop count

Fig. 8. Comparison of lookup by varying β with α = 10.

C. Comparison by varying resiliency

In this comparison, we varied β with α = 10 because libp2p
sets α set the default value as 10 and Kademlia output the

shortest lookup latency in own result shown in Fig. 6(a).

Varying β can affect the content hit ratio as well as the lookup
latency, however, the number of FindNode messages may be

increased drastically.

Fig. 8(a) shows the comparison results in terms of the

lookup latency. We can see that KadRTT outperforms others

and the difference between KadRTT and R/Kademlia is larger

than that of the case of β = 1, i.e. Fig. 6(a). Thus, β should
be taken to a value higher than “1”. Af for Fig. 8(b), KadRTT

outperforms others in terms of the hop count. Thus, if beta is
higher, the content hit with smaller hop counts in KadRTT.

From Fig. 9(a) the lookup success ratio in R/Kademlia is

higher than the case of β = 1, i.e., Fig. 7(a). However, the
ratio of R/Kademlia is still the worst in every value of β. In
Fig. 9(b), the number of FindNode messages increases with

higher beta, but that of KadRTT is the smallest. From results
in Fig. 8 and 9 we can conclude:

• If β is higher, KadRTT outperforms others in terms of
the lookup latency and the difference between KadRTT

and R/Kademlia becomes larger.

• If β is higher, KadRTT outperforms others in terms of
the hop count.

• If β is higher, the success ratio of R/Kadmelia is im-

proved, but is still the worst.

• The number of FindNode messages can be suppressed if
either the lookup latency or the hop count is improved.

V. CONCLUSION

In this paper, we proposed a Kademlia alternative, called

KadRTT to optimize the lookup latency. KadRTT has two

approaches to achieve the objective. The first one is hop count-

aware RTT-based lookup target selection. And the second one

is ID arrangement for each k-bucket so that each adjacent

ID becomes located uniformly to make the initial ID distance

shorter. From the experimental comparisons by the simulation,

we found that KadRTT outperforms other approaches in terms

of both lookup latency and the hop count. Since KadRTT

does not impose any additional communication among peers,



 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 3 5 10 15 20

L
o

o
k

u
p

 s
u

cc
es

s 
ra

ti
o

 (
m

ea
n

)

Resiliency

Kademlia

R/Kademlia

KadRTT

(a) Lookup success ratio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 3 5 10 15 20

F
in

d
N

o
d

e 
m

sg
s/

s

Resiliency

Kademlia

R/Kademlia

KadRTT

(b) FindeNode message �

Fig. 9. Comparison of success ratio and message � by varying β with α = 10.

the number of FindNode messages is not increased. Thus,

KadRTT has a practical nature for P2P applications.

As our future works, we will simulate in a larger network,

where 10000 or more peers to confirm the practicality of

KadRTT. Then, we explore the optimal value for both the

lookup concurrency and the resiliency to adjust them dynam-

ically depending on network structures.

ACKNOWLEDGMENT

The work leading up to this paper has been supported by

a gift from Protocol Labs under the grant titled as “RFP 7:

Multi-Level DHT Design and Evaluation”.

REFERENCES

[1] J. Benat, “IPFS - Content Addressed, Versioned, P2P File System, ”
ArXiv, 11 pages, 2014.

[2] libp2p Web site: https://libp2p.io/.
[3] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-

tion system based on the XOR metric,” in Lect. Notes Comput. Sci., ,
vol. 2429, pp. 53–65, 2002.

[4] I. Baumgart and S. Mies, “S/Kademlia: A practicable approach towards
secure key-based routing,” in Proc. Int. Conf. Parallel Distrib. Syst. -
ICPADS, vol. 2, 2007, doi: 10.1109/ICPADS.2007.4447808.

[5] M. J. Freedman and D. Mazieres, “Sloppy hashing and self-organizing
clusters,” in Lect. Notes Comput. Sci., vol. 2735, pp. 45–55, 2003.

[6] [1] B. Heep, “R / Kademlia : Recursive and Topology-aware Overlay
Routing,” in Proc. 2010 Australasian Telecommunication Networks and
Applications Conference, pp. 102–107, 2010.

[7] D. Stutzbach and R. Rejaie, “Improving lookup performance over a
widely-deployed DHT,” in Proc. IEEE INFOCOM2006, 2006.

[8] P. Francis et al., “IDMaps: A global Internet host distance estimation
service,” IEEE/ACM Trans. Netw., vol. 9, no. 5, pp. 525–540, 2001, doi:
10.1109/90.958323.

[9] M. Costa, M. Castro, A. Rowstron, and P. Key, “PIC: Practical internet
coordinates for distance estimation,” in Proc. Int. Conf. Distrib. Comput.
Syst., vol. 24, pp. 178–187, 2004, doi: 10.1109/icdcs.2004.1281582.

[10] P. Sharma, Z. Xu, S. Banerjee, and S. J. Lee, “Estimating network
proximity and latency,” Comput. Commun. Rev., vol. 36, no. 3, pp. 39–
50, 2006, doi: 10.1145/1140086.1140092.

[11] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” Comput. Commun. Rev., 2004, vol. 34, no.
4, pp. 15–26, doi: 10.1145/1030194.1015471.

[12] Z. Yao, D. Leonard, X. Wang, and D. Loguinov, “Modeling het-
erogeneous user churn and local resilience of unstructured P2P net-
works,” in Proc. Int. Conf. Netw. Protoc. ICNP, pp. 32–41, 2006, doi:
10.1109/ICNP.2006.320196.

[13] I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay
Network Simulation Framework,” in Proc. 2007 IEEE Global Internet
Symposium, pp. 79–84, May, 2007.


