Hash-Collecting System : Applying Freenet Routing
Method to Named Data Networking

Natsuko Fukuda
School of Fundamental Science and Engineering
Waseda University
Tokyo, Japan
kinokonoyama73 @asagi.waseda.jp

Abstract—As network usage shifts to content retrieval and
its traffic increases, Information-Centric Networking (ICN) is
collecting interests. The purpose of this paper is to improve the ef-
ficiency of content retrieval. Our proposing Hash-Collecting Sys-
tem applies Freenet routing method to Named Data Networking
(NDN) forwarding system. The average number of hops required
to retrieve contents is reduced by our proposing method from the
standard NDN forwarding system. The proposed method enables
finding content in near-by node from the requesting party and
can reduce the content retrieval traffic.

Index Terms—ICN, NDN, Freenet, Information-Centric Net-
working, Named Data Networking

I. INTRODUCTION

As the Internet usage shifts from host access to content
retrieval, Information-Centric Networking (ICN) is collecting
interest. ICN uses content name for forwarding packets while
current IP network uses IP address [1]. On ICN, routers can
cache contents and users can get a content from a nearer node
than the server of the content. In this way, ICN is expected to
contribute to load distribution and delay reduction.

Named Data Networking (NDN) is one implementation of
ICN [2]. In this paper, we incorporate the routing method of
Freenet [3] to NDN forwarding system. The purpose of this
paper is to improve the efficiency of NDN content retrieval
exploiting the idea of Freenet.

The rest of the paper is organized as follows. Section II gives
overview of NDN and Freenet as well as existing research
to improve content retrieval. Proposed mechanisms are given
in Section III. Section IV evaluates the performance of the
proposed mechanism and Section V gives conclusions.

II. RELATED STUDY
A. Named Data Networking (NDN)

The overall flow of NDN forwarding is shown in Fig.1.
An interest packet is a packet which requests a content. This
packet is sent from a consumer and carries the name of the
requested content. A consumer is a node requesting contents.
A data packet is a packet which transports the requested
content from a producer or Content Store. A producer is a node

This work was supported by JSPS KAKENHI Grant no. 19K11952 and
MIC SCOPE Grant no. JPJ000595.

978-1-7281-8688-7/22/$31.00 ©2022 IEEE

Hidenori Nakazato
School of Fundamental Science and Engineering
Waseda University
Tokyo, Japan
nakazato@waseda.jp

serving the content. Content Store provides cache function
which NDN routers are equipped with. A data packet is
forwarded back on the same path as its corresponding interest
packet in reverse order.

consumer A

node node
1 7 2

@
«—

—> interest packet

— data packet producer A

Fig. 1. Packet forwarding in NDN

An NDN router uses three data structures: Forwarding
Information Base (FIB), Pending Interest Table (PIT), and
Content Store (CS) for packet forwarding.

FIB is used to decide where to forward interest packets.
FIB stores pairs of the prefix of content names and the face
ID corresponding to the prefix. A face is an extended concept
of network interface, and it can handle not only forwarding of
packets over hardware network interfaces but also exchanging
of packets directly with applications inside machines [1]. A
face ID is the ID allotted to each face.

PIT is used for sending data packets back to the requesting
consumers. PIT records the pairs of the content name of an
interest packet and the faceID of the face at which the interest
packet has arrived. When a data packet arrives at a router, the
router refers PIT and send the data packet to the recorded face.

CS is a data structure to cache contents when data packets
arrive. If an interest packet arrives at a router is requesting a
content held in its CS, that content in the cache is sent back as
a data packet without further forwarding the interest packet.

Fig. 2 shows the processing flow of interest packets. Sup-
pose a consumer requests a content. Then, the consumer sends
an interest packet with the name of the requested content.
When the interest packet is received by a node, if the node
is a producer which has the requested content, the producer
creates a data packet with the requested content and sends back

the data packet towards the consumer. If the node received
the interest packet is not a producer but a router, the router
confirms if the requested content is cached in its CS. If it is
cached, the cached content is returned as a data packet and
the interest packet is discarded.

If the requested content is not cached in its CS, the router
examines its PIT. If the content name of the interest packet
is found in the PIT, it means that other interest packets also
seeking the same content were forwarded through this router
recently and the requests were not yet satisfied. In that case,
the router append the face ID from which the interest packet
being processed is received to the existing PIT entry and the
interest packet is discarded. If the requested content name is
not recorded in the PIT, a new PIT entry is created and the
content name and the face ID is recorded there.

Finally, the router refers FIB, looks for the prefix which
matches longest with the name of the interest packet, and
forwards the interest packet to the face matched in the FIB.

consumer sends an arrive at
interest packet producer or a node?

a node

is the content
cached in CS?
No

is there the
content name in PIT?

No
record the content name and
the face ID in PIT
refer FIB / forward the
interest packet to the face

Fig. 2. The processing flow of interest packets

discard the
interest packet /
send a data packet back

producer

v

record the face ID in
PIT / destruct the
interest packet

Fig.3 shows the processing flow of data packets. If the
requested content is found in a CS or if an interest packet
arrives at the producer of the content, a data packet is created
with the requested content in it. When the data packet is
received by a node, if the node is the consumer requesting
the content, the forwarding ends. If the node is a router, the
data packet is cached in case the content satisfies the cache
policy, and then forwarded to the face recorded in its PIT. It
means that the data packet with the requested content is sent
back to the directions which the interest packets came from.

Fetching the Nearest Replica (FNR) [4] is a mechanism
proposed to find contents in nearby nodes. In FNR, when a
consumer requests a popular content, the content is fetched
from the nearest replica regardless of whether it is on the
best-route. In FNR, each router announces the popular content
and each consumer fetch the content directly from CSs with
redirection. The total traffic, average latency, and average cost
are improved by FNR. FNR however requires a centralized co-
ordinator to find the nearest replica. In Vicinity-based Replica
Finding in NDN [5], the router has a Content List that contains
the name prefixes from the CS and the list is used to advertise
the availability of the contents and replicas from a node to

arrive at consumer

consumer or a node?

a d:;i;ra;zzt is end forwarding

cache the content

Does the
content satisfy the
cache policy?

forward the data packet to
— the faces recorded in PIT /
delete the PIT entry

Fig. 3. The processing flow of data packets

other nodes in a vicinity. The interest packet is forwarded to
the face written in the Content List if the requesting content
is in the list. If the requested content is at a node a few hops
away from the nodes exchanging the list, there is no clue in
where to forward the interest packet.

B. Freenet

Freenet is one of peer-to-peer (P2P) network applications
and it permits publication, replication, and retrieval of files
while protecting the anonymity of the users [3]. In Freenet,
forwarding or retrieval of data is conducted by using hash
values. A node in Freenet has a routing table composed of
pairs of a binary file key and a node address. This binary
file key is obtained by applying a hash function to the file
name. Since a “node” in Freenet is not a router but a computer
connected at the end of a network unlike a node in NDN, the
node has a node address, or an IP address. A Freenet user who
requests a file has to calculate the binary file key of the file
and sends it as a request to the user’s own node. Each request
is given a hops-to-live value, the limit of the number of hops
of forwarding. The request is forwarded to the node address
which has the closest binary file key in the routing table to the
binary file key of the requesting file while hops-to-live value is
set to non-zero value. When the found file is sent back to the
user, the copies of the file are cached in each node. As more
files circulate in the network, the efficiency of file retrieval is
improved because the files whose hash values are closer are
placed to closer nodes.

III. PROPOSAL
A. Overview

We propose a mechanism called Hash-Collecting System
that provides off-path caching function together with routing
to the cached contents to be used with NDN. NDN with Hash-
Collecting System combines NDN forwarding system with the
caching/forwarding concept of Freenet.

NDN with Hash-Collecting System forwards interest pack-
ets in two phases: Normal-Routing Strategy phase and Hash-
Routing Strategy phase. Strategy is a mechanism to decide the
direction to forward packets in NDN term. We call interest
packet forwarding using the standard NDN routing strategy
using FIB, Normal-Routing Strategy. In addition, we propose

a new routing strategy, Hash-Routing Strategy. Hash-Routing
Strategy forwards interest packets applying Freenet routing
method. Interest packets are first forwarded by Hash-Routing
Strategy within a hop limit specified by a parameter TTL and
if no matching content is found, then the strategy is switched
to Normal-Routing Strategy. In Hash-Routing Strategy, interest
packets are forwarded using Cache Table (CT) in each router.
CT holds cached contents like CS in NDN, and in addition,
holds hash values of each content name and face IDs to which
interest packets are to be forwarded (TABLE I).

TABLE I
STRUCTURE OF CT.

content name content hash value Face ID
0d6477ad9fc16e4
/prefix1/aaa/bbb | 01001011- - - debdee3ff72. - - 2
2ad21cd6cfb385b
/prefix2/ccc/ddd | 00111001 - - 836dbc21209- - - 3

Additionally, in order to populate CT, Hash-Collecting
System defines Hash-Collector. A Hash-Collector is a kind of
consumer who helps to collect the contents whose hash values
are “near” to its own Collector ID. To collect the contents, a
Hash-Collector generates a new type of interest packet called
hash-interest packet. A hash-interest packet carries a Collector
ID instead of a content name. When a router receives a
hash-interest packet, a process called Collection-Judgement is
executed. In Collection-Judgement, the router searches its CT
for the contents whose hash values are “near” to the Collector
ID carried by the hash-interest packet. If near contents are
found, one of the content is sent back to the Hash-Collector
as a hash-data packet and if not, the hash-interest packet is
forwarded by Hash-Routing Strategy until its TTL expires.

B. Interest/Data Packet Forwarding

Interest and data packets are forwarded as shown in Fig.4.
The forwarding process of interest packet from a consumer is
divided into two phases as mentioned before. In the first phase,
the interest packet is forwarded with Hash-Routing Strategy.
In this phase, the interest packet can be forwarded only in
a limited number of hops (TTL). If the content is not found
within the hop limit, a failure is conveyed to the router where
the Hash-Routing Strategy is initiated by a nack packet, and
the forwarding process goes to the second phase where the
interest packet is forwarded with Normal-Routing Strategy. In
either phase, once the requested content is found on the route,
the data packet is sent back.

When an interest packet is received by a node, which is
a router, in Hash-Routing Strategy, the router firstly checks
if the requested content is cached in its CT, instead of CS,
and records the content name and the face ID in PIT. Fig.5
shows the processing flow of interest packets in Hash-Routing
Strategy after recording the necessary information in PIT. First,
The router checks if CT is empty. If so, the interest packet is
sent to a randomly selected face. If CT is not empty, the router

16
[corsamer A} — (rode)
consumer A node

1
S

---» interest packet
(Hash-Routing Strategy)

producer A

---% nack packet

—> interest packet
(Normal-Routing Strategy)

— data packet

Fig. 4. Interest and Data Packet Forwarding

calculate the hash value of the content name of the interest
packet by applying the same hash function as used in CT to
the string of that content name. Then, the router examines CT
and find the content which has the “nearest” hash value to the
one calculated from the content name in the interest packet.
The definition of “nearest” is that the absolute value of the
difference between these two hash values is least. Finally, the
router forwards the interest packet to the face specified in the
nearest CT entry.

forward the
interest packet to a
random face

record the
content name and the
face ID in PIT

in CT, search the content having
the “nearest” hash value to that
of the interest packet

forward the interest
packet to the face which the
content came from

Fig. 5. Interest packet forwarding in Hash-Routing Strategy

C. Populating Cache Table

In order to populate CT, Hash-Collector System uses hash-
interest and hash-data packets, and also Hash-Collector.

Hash-Collectors are deployed at some of the routers in
the network. Each Hash-Collector is assigned an ID called
Collector ID and the hash-interest packet sent from a Hash-
Collector carries its Collector ID. The value of Collector ID
is assigned from the same range as the hash values generated
by the hash function used in Hash-Routing Strategy. How to
allocate a Collector ID to each Hash-Collectors is left for
future research. A hash-interest packet is forwarded within a
TTL set by a Hash-Collector and if no content is found within
the TTL, a nack packet is returned.

Forwarding of hash-interest and hash-data packets is shown
in Fig.6. A hash-interest packet sent by a Hash-Collector seeks
the content which has a hash value “near” the Collector ID
of the Hash-Collector. The distance between two hash values
or between a hash value and a Collector ID is defined as the
absolute value of the difference of the two values. A distance
is “near” when the distance is less than a certain threshold.
The threshold is a parameter in our experiments. Please note
the difference between “near” and “nearest” defined in section

III-B. “Near” is determined in terms of a threshold while
“nearest” means the smallest distance.

Content Name prefix1/aaa Content Name prefix2/bbb
Collector ID 9e06711a32292¢e Hash Value of |e52a79b2fa02f01
ofector 730bf81b7e |~near | Content b84al2a39fe
Content 101100010-+
Hash- — (node\ —* (node \—> |l node
Collector A | <— 1 ——\ 2 I\ 3
node node node producer A
— hash-interest 4 5 6
packet
— hash-data node node node
packet 7 8 9

Fig. 6. The overall flow of packets related to Hash-Collector.

Upon reception of a hash-interest packet, the router checks
if CT has any content which has its hash value near to
the Collector ID carried by the hash-interest packet. We
name these processes “Collection-Judgement.” Fig. 7 shows
the processing flow of Collection-Judgement. When a hash-
interest packet from a Hash-Collector arrives at a node, the
router examines its CT and extract all of the contents whose
hash values are near to the hash value of the hash-interest
packet. If there is no near content, the hash-interest packet
is forwarded with the Hash-Routing Strategy. If multiple near
contents exist, the router selects one content to return to the
Hash-Collector from these contents in some way, such as by
selecting randomly. The way of selecting a content from near
contentsa is a parameter and will be explained in section IV-B.

After selecting one near content, the router decide whether
to return the content following a certain policy. The policy
must be set so that the probability of picking up the content
is lower on the closer node to Hash-Collector who request
that content. The reason why the policy is needed is that we
expect Hash-Collectors to collect as many kinds of contents
as possible.

If the content is decided to be returned, the router creates
a hash-data packet. A hash-data packet encapsulate the data
packet to be returned within it. A hash-data packet also carries
the Collector ID contained in the corresponding hash-interest
packet. The Collector ID is necessary to return to the Hash-
Collector using PIT.

On the way back to the Hash-Collector, the intermediate
routes may cache the content carried by the hash-data packet.

IV. EXPERIMENT
A. Experimental Environment

The experiment is conducted on ndnSIM, which is an NDN
simulator based on NS-3 [6].

The topology used in this experiment is GEANT topology.
GEANT is the data network providing interconnection among
NRENSs (National Research and Education Network) of Euro-
pean countries [7].

forward the hash-
interest packet by using Hash-
Routing Strategy

any content having
the “near” hash value to that of
the hash-interest
packet ?

a hash-
interest packet arrives
at a node

from the searched contents

select one content to forward l

Yes

send the hash-data
make a hash-data packet packet back

Fig. 7. The processing flow of Collection-Judgement.

Fig. 8. GEANT topology.

In this experiment, the hash function used in Hash-Routing
Strategy is the default hash function in C++, std::hash().
The possible value calculated by this function is from O to
SIZE_MAX which is the max value of std::size_t.

The initial value of TTL in interest packet used in Hash-
Routing Strategy and the one in hash-interest packet are both
set to 4 in consumers and in Hash-Collectors, respectively.

B. Setting of Collection-Judgement

In Collection-Judgement, the router has to extract the con-
tents whose hash value is near from CT. In this experiment, the
threshold to determine the near-ness is set to 50%, 67%, 80%
and 100% of SIZE_MAX. For example, when the threshold is
fixed to 50% of SIZE MAX, the router takes the contents
whose hash value is in £25% of SIZE_MAX away from
Collector ID of the hash-interest packet.

If multiple contents are within the threshold, the way of
selecting one content from these contents is as follows:

(a) Select the content whose hash value is nearest to that of
the interest packet.

(b) Select one of the contents whose hash value is in the
threshold randomly.

The policy alternatives deciding whether the content is sent
back in Collection-Judgement is as follows:
(1) Content is sent back on all nodes except the one next to
Hash-Collector who sent the hash-interest packet.

(2) Content is sent back with the probability p given by
p = 1— < # hops from Hash-Collector > x0.2

C. Placement of Consumers and Producers

In this experiment, multiple consumers are assumed and
each consumer requests different prefixes. Let us call the
consumer for observation Main Consumer (MC). In addition to
MC, we place other consumers to generate interfaring request.
We call the other consumers Noise Consumers (NC).

TABLE II shows the placement of consumers and producers
in the four different configurations. MC, NC, and P stand for
Main Consumer, Noise Consumer, and Producer, respectively.
A consumer and a producer tied with “-” means the consumer
requests contents served by the producer. The numbers at-
tached to the prefixes MC, HC, and P expresses the node
number in Fig. 8. Hash-Collectors are placed at all the nodes
except the ones written in Table II. The distance threshold is
used to determine near-ness among hash values. MC-P hops
in the table expresses the average # hops between an MCs and
P in the topology.

TABLE II
LOCATIONS OF CONSUMERS AND PRODUCERS
Configuration locations
A MC21-P30
B MC17-P35
C MC17,31-P35
D MC17-P35, NC12-P1, NC31-P36
D. Results

The experiment is conducted under combinations of alter-
natives of (a)/(b) and (1)/(2) mentioned in section IV-B and
configurations A - D mentioned in section IV-C. Table III
shows the average number of hops traveled by data packets in
each experiment.

TABLE III
AVERAGE NUMBER OF HOPS OF DATA PACKETS

distance . .]

configuration threshold avg. # hops of data packets
(%) @@ OO @2 O®Q
50 3529 3934 3393 3.335
A 67 3999 3920 3.025 3.288
MC-P hops: 4.0 80 3985 3.888 3.354 3.607
100 3.817 3593 3557 3.605
50 4.864 5.886 4942 4.830
B 67 5804 5156 4.521 4.802
MC-P hops: 6.0 80 5954 5962 5701 4.665
100 5.671 5556 5346 5.150
50 5.148 4596 5911 3.881
C 67 5909 5962 4.527 5.156
MC-P hops: 5.998 80 5854 5284 5409 5.801
100 5404 5708 4.617 5915
50 5913 5950 4.963 5.925
D 67 5953 5846 5504 5.892
MC-P hops: 6.0 80 5949 5948 5161 5.256
100 5931 5929 5.640 5.870

E. Discussion

Table III shows that Hash-Collecting System can shorten the
number of hops from the ones without Hash-Collecting System
which are expressed with “MC-P hops” in the table. What is
common in all the results is that there is no correlation between
the distance threshold and the number of hops derived.

In configurations A and B where only one pair of a
consumer and a producer exists, the cache hits are caused by
contents which are requested from Hash-Collectors. In these
configurations, the numbers of hops are fewer in condition
(2), than those in condition (1). It means that the probability
of cache hit is higher when Hash-Collectors goes in search to
farther nodes.

Comparing the results of configurations B and C, there is
not much difference in the number of hops between the two
results. Thus, the number of Main Consumers does not affect
the behavior of Hash-Collecting System.

Comparing the results of configurations B and D, the
effect of reduction of hops gets rusty in configuration D
because Noise Consumers replace the caches collected by
Hash-Collectors. However, the usefulness of Hash-Collectors
are still remained.

V. CONCLUSIONS

In this paper, we propose Hash-Collecting System and eval-
uate its performance. The results show the proposal method
contributes the reduction of the number of hops to be traveled
by data packets. While Hash-Collecting System works in
various arrangements of nodes, its performance degrade when
many consumers are present and compete for cache space.

Placement of Hash-Collectors with proper Collector IDs at
right places can further shorten the hops for content retrieval
and is a topic of future research. Also, the cache policy, which
decides to cache or evict the content whose hash value is far
away from the Collector ID, is needed, because hash-interest
packets can bring the contents whose hash value is not “near”
to Collector ID from a producer.

REFERENCES

[1] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. Briggs,
and R. Braynard, “Networking named content,” in Proceedings of the 5th
ACM International Conference on Emerging Networking Experiments and
Technologies (CoNEXT 2009), 2009.
“Named data networking project website,” Last accessed on Nov. 2,
2019. [Online]. Available: https://named-data.net
I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A distributed
anonymous information storage and retrieval system,” Lecture Notes
in Computer Science, vol. 2009, pp. 46+, 2001. [Online]. Available:
http://citeseer.ist.psu.edu/clarke00freenet.html
J. Cao, D. Pei, X. Zhang, B. Zhang, and Y. Zhao, “Fetching popular data
from the nearest replica in ndn,” in 2016 25th International Conference
on Computer Communication and Networks (ICCCN), 2016, pp. 1-9.
[S] A. Suwannasa, M. Broadbent, and A. Mauthe, “Vicinity-based replica
finding in named data networking,” in 2020 International Conference on
Information Networking (ICOIN), 01 2020, pp. 146-151.
S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang., “ndnSIM 2.0:
A new version of the NDN simulator for NS-3,” Named Data Networking
Project, Technical Report NDN-0028, January 2016, [Online]. Available:
http://named-data.net/publications/techreports/ndn-0028-1-ndnsim-v2/.
[7] 1. Murase, “Trends on network testbeds in the world,” Journal of
the National Institute of Information and Communications Technology,
vol. 52, no. 3/4, pp. 21-30, September/December 2005.

[2

—

3

—_

[4

finar}

[6

—_

