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Abstract—This paper proposes the VirIoT platform that
enables virtualization of IoT systems, formed by virtual things
and brokers. Our goal is to decouple developers of IoT
applications from providers of things. VirIoT allows owners of
IoT infrastructures to share them with many IoT application
developers, which can simply rent the virtual things and
the brokers their applications need. VirIoT can be useful
for small stakeholders whose applications require large-scale
IoT infrastructures, who are nevertheless unable to handle
the infrastructure deployment. VirIoT can also be useful for
owners of IoT infrastructures, in order to create isolated
development environments where to run experimental services,
before final deployment in the production system.
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I. INTRODUCTION

Nowadays, most of the real-world IoT solutions operate
within isolated silos containing both the infrastructure and
the full-stack software. For small stakeholders, the infras-
tructure provisioning might be an insurmountable barrier that
prevents their entering in the IoT arena, even though they
might have innovative ideas. For instance, let us consider
use cases for smart lighting or crime prevention systems in a
big city. Tens of thousands of presence sensors, cameras and
intelligent light bulbs are necessary, with a very high initial
capital expenditure. Such high costs would be affordable to
a small number of large corporations only, thus preventing
fair competition and, even worse, slowing down the inno-
vation pace, which instead is fast when thousands of small
stakeholders take the field.

For almost all of today’s applications running in pro-
duction environments, Infrastructure-as-a-Service solutions
have provided a convenient and widely adopted approach
for renting the needed computing resources. Tenants can
just focus on their applications, because the infrastructure,
formed by computing, storage and network resources, is
offered as a service by a cloud provider.

In this paper, we present an IoT virtualisation platform,
named VirIoT , which re-uses cloud concepts but adapts
them to the IoT world. VirIoT provides IoT developers with
virtual IoT systems, named Virtual Silos, which are isolated
environments formed by Virtual Things and IoT Brokers.

Virtual things appear to a tenant as dedicated sensors or
actuators that expose their data through a configurable broker
technology (e.g. oneM2M [1], FIWARE [2], and the likes).
Just like a cloud offers virtual servers with configurable
virtual hardware and operating system (OS), VirIoT offers
Virtual IoT Systems with a configurable set of Virtual Things
(the hardware) and a Broker (the OS).

VirIoT decouples IoT infrastructure providers from appli-
cation developers, thus making possible: for the providers,
to better use their IoT devices by sharing their data with
different tenants, and, for the tenants, to configure the IoT
infrastructure they need, quickly. Provider and tenant may
also coincide, exploiting VirIoT for running experimental
services within the private infrastructure in use every day,
raising higher the security bar by running applications and
their things inside isolated environments.

II. RELATED WORK

A. IoT Cloud Services

IoT applications require sophisticated coordination across
connected objects, multiple clouds and networks, and the
mobile front-ends. This is a complex endeavour, and devel-
opers do not want to do it from scratch. Hence cloud services
for IoT are quickly emerging to facilitate IoT development,
supported by providers that range from hardware vendors
(Intel IoT platform, Bosch IoT Cloud) to system integrators
(IBM Watson IoT) to the known ICT giants (Google Cloud
IoT, AWS IoT, Microsoft Azure IoT).

All of the above IoT cloud services operate on similar
architectures. The basic idea is to invite the user to bring
her own set of sensors and actuators to their architecture,
and they offer many functions on top, ranging from analytics
to simplified device integration, from automated dashboards
to improved security, from the scalability of billions of sen-
sors/messages to flexible deployments. Accordingly, specific
SDKs are provided to support application development.

For instance, connecting a RaspberryPi-based device to
the AWS IoT cloud is a matter of generating a pair of
security keys through the graphical console, then registering
the device in the same console and deploying the C SDK on
the Raspberry, which then securely connects via MQTT to
the AWS cloud. A Thing Shadow (the cloud counterpart of
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the device) is then available for UPDATE, GET or DELETE
methods, via both MQTT or RESTful APIs.

Though the above providers have similar levels of func-
tionality and enterprise reliability, some peculiarities are
worth noticing. For instance, AWS offers a customised ver-
sion of FreeRTOS for incorporating low-power devices such
as small microcontrollers within the AWS IoT ecosystem.
Google IoT, on the other hand, has a major focus on machine
learning and makes possible running TensorFlowLite over
Linux and AndroidThinghs based edge devices/gateways.

While the platforms mentioned above mainly offer cloud
services to IoT devices of customers, our VirIoT is in-
stead focused on offering things as-a-service, by acquiring
(control of) an ever-growing number of devices out there
in the field, and by virtualising them to supply a scalable
layer of horizontally share-able IoT resources to customers.
Moreover, the virtual things rented by a customer can be,
in turn, connected to upstream cloud service platforms as
if they were real, un-shared, IoT devices. In this sense, the
VirIoT services are complementary to most of the existing
solutions and can interoperate with them in an extended IoT
chain (see bottom-right of fig. 4).

B. IoT Brokers

IoT information is collected and distributed by a spe-
cific component usually named as Broker. The design and
development of the broker component are focused on effi-
ciently managing a plethora of IoT use-cases by employing
request-response and publish/subscribe messaging patterns
and exposing a public API based on open and standard
protocols. An IoT broker stores information according to a
specific data-model and exposes a secure API for publishing,
fetching and discovering IoT data items, devices, and the
likes. Additionally, by using a distributed approach, many
brokers can be interconnected to scale out the system.
E.g., an IoT platform can comprise set of ”edge” brokers
connected to a core broker.

Two different IoT platforms whose brokers that have
gained much interest by both industry and academia are
oneM2M [1], [3] and FIWARE [2].

1) oneM2M: The oneM2M platform [3] represents IoT
resources in a hierarchy whose main entities are Application
Entities (AEs), Containers and Content Instances (the actual
data items). Every IoT device or IoT application is associated
with an AE, which contains Containers that store Content
Instances, i.e., the actual IoT data items. For instance, a
sensor can be a source of content instances; an actuator
can be a consumer of content instances which represent its
status (e.g., on/off); an application logic can fetch Content
Instances from different Containers, make some reasoning
on top of them and publish a new state information in a
Container where the actuator is registered to. An AE can
also include semantic information about the contained data.

Applications interact with the platform through a single
or a hierarchy of Common Service Entity (CSE) whose
API supports data publishing, authentication, information
discovering and subscriptions to name a few. HTTP and
MQTT are used as transport protocols. Currently, many
CSE implementations exist including Mobius [4], Open-
MTC, Eclipse OM2M, etc. Actually, the CSE server can
be considered as the oneM2M broker.

2) FIWARE: FIWARE [5] is an initiative funded by
the European Commission aiming at making easier the
development of smart applications by promoting the use of
a global catalogue for sharing ready-made platform compo-
nents, called Generic Enablers (GEs).

One of the most significant platform components is the
Context Broker, the entity responsible for the distribution
of the information. So far, there are two implementations:
Orion Context Broker and Aeron IoT Broker which provide
a publish/subscribe messaging pattern, as well, as a method
to query the stored context information. They adopted Next
Generation Service Interfaces (NGSI) REST API, a tech-
nology standardised at Open Mobile Alliance (OMA) [6],
[7]. Additionally, thanks to the work of ETSI ISG CIM
workgroup [8], NGSI has evolved into NGSI-LD (based on
JSON-LD) allowing for a richer representation of informa-
tion. FiWARE uses a component called IDAS, which is a
Backend for Device Management. This component makes
uses of IoT Agents for translating the information coming
from IoT lightweight protocols such as MQTT or CoAP,
among others to the NGSI representation.

III. CONCEPTS AND USE CASES

Fig. 1 shows the main concepts behind the VirIoT plat-
form. On the left we have many IoT Systems, where an IoT
System is made of a network of real things (sensors, actu-
ators, etc.) exposing information through an IoT platform,
such as FIWARE Orion or Mobius [4] oneM2M. Hence, an
IoT System is formed by a collection of real things and by
the platform that manages them.

Information coming from different IoT Systems, and
possibly from other data sources (e.g. open data), forms a
Root Data Domain, from which VirIoT gathers information.
Specifically, a group of VirIoT components named ThingVi-
sors fetch the information and generate data items associ-
ated with Virtual Things. Consequently, a Virtual Thing is
an emulation of a real thing that produces data obtained
by processing/controlling data coming from the root data
domain.

Fig. 2 presents a diagram where we have emulated four
virtual things (right side of the figure) from three real things
(left side of the figure). The three real things are a station-
ary camera, a camera-equipped drone and a thermometer,
whereas there four virtual things are a face detector, a person
counter, a moving camera and a thermometer.



Figure 1: VirIoT Platform
Figure 2: Virtual Things (vThings)

The things’ virtualisation concept that we are considering
in this paper may go beyond traditional data processing since
it can also involve ”control” of the real things. Let us explain
this concept by detailing the virtualisation process made to
obtain the virtual things presented on the right side of the
figure. The virtual face detector and virtual person counter
obtain their data by performing analytics on the video stream
coming from the real camera. The virtual thermometer
obtains its data by merely copying data coming from the
real thermometer. Finally, the virtual moving camera is a
camera that takes pictures at a very slow rate (e.g. one frame
per hour) which a user/tenant can relocate to one or more
given positions, such as interesting hot spots of a harbour
in need of statistics or surveillance. In this last example,
virtualisation is achieved by controlling the path of a drone
to periodically drive it over the locations chosen by tenants
and taking a picture.

Fig. 3 depicts a general schema of how a ThingVisor
receives data coming from one or more real things (or other
sources, e.g. the web) and process it in its native format to
produce new data items of the virtual thing. These items are
produced in a neutral data format that can be translated to
the data formats in use by different brokers.

The VirIoT platform provides tenants with virtual IoT sys-
tems, dubbed Virtual Silos, which are isolated environments
dedicated to a specific tenant for running his applications.
A tenant can add data coming from the platform’s virtual
things to his virtual silo. Besides, he can also connect his real
things to his virtual silo. Collectively, such data comprises
the tenant data domain which is exposed to the external
world through a broker technology of choice. For instance,
let us assume that Bob is a tenant who wants to develop
a watering system for his house, and he is familiar with
the FIWARE Orion Broker. Bob can create a virtual silo
embedding such a broker, connect his own thermometers and
watering devices (actuators) to the broker, and he can ”rent”
a virtual hydrometer for measuring air humidity outside

Figure 3: ThingVisor

his house, just because he does not own a real one. Data
from the rented hydrometer reaches Bob’s broker in the silo,
together with data from his sensors. So, Bob only sees his
dedicated data set and broker, by accessing his silo, and the
platform thereby provides for data and service isolation.

Similarly to cloud computing, we envisage two possible
high-level usage scenarios of the VirIoT platform, public
and private. In the public scenario, we foresee three distinct
types of stakeholders: i) providers of real IoT systems
offering their data in different formats, ii) providers of one
or more competing for VirIoT platforms, which use this
data to set up virtual things, iii) IoT application developers
renting IoT virtual silos. This use case is going to be
crucial in large-scale environments, such as smart cities,
whereby the city owns several arrays of sensors and sells
the raw data streams to a VirIoT provider, which acts as
the intermediary between the vast amount of raw resources
and the applications. Designers of smart city applications
can instantiate silos as a service in the platform, gaining
access to perhaps thousands of selected virtual things and



a brokering environment of choice, without caring about
infrastructural and data heterogeneity problems. Regarding
data heterogeneity, we note that many IoT platforms cope
with it by transforming external heterogeneous data items
into an internal format (e.g. through proxies) and then by
exposing that format to the final user, through a specific
API. VirIoT makes a step forward: the data model and the
API are a choice of the user rather than a platform one.

In the private scenario, the same actor owns both the
infrastructure and the applications. She can use VirIoT both
to enclose each IoT application in a small isolated envi-
ronment (i.e. a virtual silo) and to support safe innovation,
by decoupling the newly designed IoT applications from
IoT services that are already in production. For instance,
a company operating a smart harbour system may have
a robust solution in place, where the existing application
exploits various real sensors through a production broker.
A novel version or an enhancement can be safely tested
in a virtual silo, before final deployment in the production
environment. Security-wise, a choice can be made as to what
to expose to attacks from the outside. In short, a private
approach to IoT virtualisation offers the same advantages a
private cloud is nowadays offering to companies deploying
their servers in virtual vs bare-metal.

IV. SYSTEM ARCHITECTURE

Fig. 4 shows a preliminary architecture for the VirIoT
platform. This architecture follows a micro-services design;
hence each component is an autonomous subsystem expos-
ing network interfaces. Linux containers (e.g. Docker) have
been considered as the preferred component packaging tools,
possibly supported by a container orchestration tool such as
Kubernetes (k8s).

For external communications, the platform exposes an
HTTP REST interface for the administrator and the tenants.
Internal communications use a topic-based pub/sub system
whose topics are reported in table I. There are control and
data topics. Control topics are used by components to receive
(c_in) or send (c_out) control messages. Data topics are
used to convey the data items of virtual things.

On the left of fig. 4 there are the ThingVisors, each
uniquely identified by a name (TViD). A ThingVisor gener-
ates data items of one or more virtual things, and each virtual
thing is uniquely identified by a name (vThingID). The
architecture is agnostic to the technology used to develop
a ThingVisor since it runs within an own container (or k8s
pod). However, it is necessary that it communicates with
the other components through vThing and ThingVisor topics
(again, see table I).

On the right of fig. 4 there are virtual silos (vSilos), which
are used by tenants: e.g. Bob, Hana, and Lucas. Each silo
is identified by a unique name (vSiloID). There could
be different types of virtual silos, which differ in terms of
broker type, scaling property, storage model, etc. We call

flavour a specific configuration of a virtual silo, therefore
a virtual silo is an instance of a given flavour. In figure
4, Bob and Hana have their own virtual silos (#a and #b,
respectively) whose flavours are the same and include a
oneM2M broker to which their applications connect. Lucas
uses a virtual silo of a different flavour, instead, which
exports the IoT data of his virtual/real things via simple
MQTT topics. This is a kind of raw virtual silo, which can be
in turn connected to an upstream IoT platform such as Node-
Red or Google/Azure/Amazon IoT cloud services, according
to the application design and deployment strategies.

Each virtual silo includes an internal controller that is
used to configure it (e.g. for adding or removing instances
of virtual things) and also to relay the data items of selected
virtual things from the ThingVisor to the silo’s broker.
Again, the architecture is agnostic to the technology used to
develop a virtual silo, as each silo runs in an own container
(or k8s pod).

The master-controller manages the deployment of new
components in the systems as well as their configuration,
following requests coming from administrator and tenants.
System state information, about virtual silos, virtual things,
ThingVisor, etc. is stored in a System DB. Specific ob-
ject stores maintain container images of silo flavours and
ThingVisors.

We now describe some basic procedures. The adminis-
trator can request to add a new silo flavour or ThingVisor,
in order to extend the VirIoT platform’s capabilities. Con-
sequently, the master-controller inserts the new container
image of the silo/ThingVisor into the proper stores and
updates the System DB. In the case of ThingVisors, it is
then the underlying container platform that runs instances of
them. As soon as it is up and running, a ThingVisor starts
to publish data items of the virtual things it handles to the
related data topics.

When a tenant requests creation of a virtual silo, the
master-controller fetches and runs an instance of the image
of the requested flavour, providing the tenant with an IP
address and port where she can contact the broker running
inside the virtual silo. Subsequently, a tenant can request
virtual things to be added to her virtual silo. The master-
controller, in turn, relays this request to the virtual silo
controller through its input control topic. Consequently, the
silo controller registers the necessary metadata in the silo’s
broker and becomes a subscriber of the virtual thing data
topic, thereby starting to receive related data items. These
data items are translated from the neutral format to the data
model used by the silo’s broker, and then they are eventually
pushed to the broker. Moreover, the master-controller is the
one that stores all configuration information of the virtual
silos in the System DB.

We have made a preliminary open-source implemen-
tation, which uses Docker as a container manager. We
devised three silo flavours, offering Mobius oneM2M [4],



Figure 4: System Architecture

Table I: System Topics

Topic Naming Scheme Description

vThing (Data) vThing/<vThingID>/data Used by a ThingVisor to publish data items of a virtual thing.
vThing (Control) vThing/<vThingID>/{c_in,c_out} Used by a ThingVisor to send (c_out) and receive (c_in) control information

related to an handled virtual thing (e.g. change data source, add face to match,
motion threshold update, change virtual camera position, etc.)

ThingVisor (Control) TV/<TViD>/{c_in,c_out} Used by a ThingVisor to send (c_out) or receive (c_in) control messages
related to the whole ThingVisor (e.g. pause, remove, activate vThing, etc. )

vSilo (Control) vSilo/<vSiloID>/{c_in,c_out} Used by the vSilo controller to send (c_out) or receive (c_in) control
messages related to the specific virtual silo (e.g. add vThing, remove vThing,
etc.)

Master (Control) master/{c_in,c_out} Used by the master-control to send (c_out) or receive (c_in) control
messages related to the system configuration

FIWARE Orion and MQTT Mosquitto as possible brokers.
We also developed some configurable ThingVisors: two of
them merely fetch data items from FIWARE/oneM2M IoT
domains and replay them to related virtual things topics;
another ThingVisor fetches weather data of different cities
from OpenWeather, parses it and publishes temperature,
pressure and other weather information as data items of
different virtual things. Regarding the neutral format, we
used the latest NSGI-LD ETSI specification [8].

V. THINGVISOR DESIGN TECHNOLOGIES

A flexible IoT service development platform may undeni-
ably help the implementation and deployment of ThingVi-
sors. To this end, solutions providing service function chain-
ing are valuable candidates. We can devise a ThingVisor as
formed by an ordered set of tasks, composing in this way
a service function chain where the last task is publishing
produced data on VirIoT system topics. In what follows we
present two platforms, FogFlow and ICN, that can be used as
midleware between the Root Data Domain and ThingVisors.

A. FogFlow

FogFlow [9] is an IoT edge computing framework that,
aimed at smart city environments, which uses an NGSI-
centric programming model to allow users to develop and
deploy IoT services over cloud and edges easily.

Each service is made by a set of tasks that receive and
send ”flows” of data, either from IoT sources or from other
tasks. FogFlow provides a graphical user interface for the
definition of IoT tasks called fog-functions. The platform
also offers a discovery function that makes it possible to
create a federation among the NGSI IoT brokers of the
Root Data Domain. A fog-function can request IoT data
to the internal Orion Broker, and the system will relay
this request to the proper IoT Broker of the Root Data
Domain. Moreover, the federation may also be extended
to non-NGSI brokers/devices living within the Root Data
Domain, through a specific adapter. A FogFlow orchestrator
takes care of deploying fog-functions to optimised locations
that offer Cloud/Edge/Fog computing functionality (on the



Figure 5: Integration of FogFlow with other components

left of figure 5). Finally, data produced by a chain of fog-
functions is published to the internal Orion Broker and, this
way, different ThingVisors can merely fetch and republish
them to the VirIoT system topics.

B. ICN Service Function Chaining

We can build ThingVisors by chaining functions and
exploiting Information-Centric Networking (ICN) technol-
ogy [10], [11], as well. ICN uses names as opposed to
addresses in order to specify the delivery destination of
a packet. Its services resemble that of content delivery
networks, but with packet-level granularity. ICN can support
both request-response and publish-subscribe [12] commu-
nication patterns. We can exploit name-based delivery to
form ThingVisors out of in-network functions, where an in-
network function can be either a sub-task of a ThingVisors or
another ThingVisor, thus enabling chaining of ThingVisors
to create a different ThingVisor. Unique names are assigned
to in-network functions. Then, we can express the execution
of a sequence of in-network functions by a sequence of
names. Whenever the IoT systems forming the Root Data
Domain are able to provide replicas of in-network functions
under the same name, the name-based anycast delivery
capability of ICN can be in turn exploited to properly
select the best replica, thus increasing system reliability and
network efficiency.

VI. CONCLUSIONS

Current IoT cloud solutions usually offer virtual data hubs
for collecting, analysing and distributing information coming
from things owned by the user. In this paper we present
VirIoT , an IoT platform that has a different virtualisation
goal: to offer virtual things to the users lacking them,
alleviating developers of the burden of buying and deploying

IoT devices needed by their applications. Such virtual things
are based on real things, just like virtual machines are based
on real hardware. We think that such a concept of sharing
the IoT hardware infrastructure is not so much explored in
the IoT (cloud) arena, thus we suggest this paper is a step
forward in an exciting and promising direction.
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