
2020 International Conference on Emerging Technologies for Communications (ICETC 2020)
1

Federation of IoT Systems and Service Function Chaining

Hidenori NAKAZATO†a), Fellow

SUMMARY IoT systems tend to be silos which are built ground up for
their particular applications. Fed4IoT is an EU-JP joint effort to federate
IoT silos and make IoT devices and infrastructures shared among many IoT
applications. This paper introduces the concept and the current architecture
of Fed4IoT system. As a part of the Fed4IoT system, we are promoting
to use service function chaining (SFC) to manage information to/from IoT
devices within edge or in-network computing context. SFC provides a
mechanism to reduce latency and distribute workload. Furthermore, In-
formation Centric Networking (ICN) technology is adopted in addition to
pub/sub communications, which is common among IoT systems, to imple-
ment SFC. The name-based forwarding in ICN gives us an opportunity to
dynamically bind a function instance to a particular demand and conse-
quently to meet the requirements in the demand. As an additional feature,
the caching capability in ICN can be exploited to bring further reduction in
latency and network load.
key words: IoT, Federation, Service Function Chaining, ICN, Caching

1. Introduction

IoT systems are expected to proliferate and to be applied to
wide range of fields such as smart parking, traffic manage-
ment, public transportation, vending machine management,
smart home, and smart city. Most of the IoT systems are
built ground up for their particular applications. Building an
IoT system includes installation of IoT devices, connecting
IoT devices to a communication network, and development
of application software. Each IoT system is operated in iso-
lation and interworking among systems is not easy. Say two
smart parkings operated by different organizations cannot
provide integrated view of open slots even though two park-
ings are located right next to each other. Each IoT system is
a silo in other words.

There are already many initiatives to link IoT systems.
However, it is not a simple matter to link IoT systems from
different fields and provide services that span different ap-
plication fields because these IoT systems use different in-
terfaces and data models. Linking of IoT systems has not
yet progressed beyond tests and demonstrations, and imple-
mentations with a business model and capable of sustained
operation are still in the future.

Starting an IoT service incurs high initial cost due to
the ground up IoT system construction. For example, a light
pole is equipped with a motion sensor and there is a bus
stop with a human counter right next to the light pole while
a surveillance camera is installed targeting the area of the
bus stop. Here we eliminate the motion sensor and human

†The author is with Waseda University, Shinjuku-ku, Tokyo,
169-0072 Japan.

a) E-mail: nakazato@waseda.jp

counter if we can share the surveillance camera. If we can
share IoT devices, we can reduce the high initial cost by
avoiding development of the infrastructure.

To deal with these two issues, federating IoT systems
and avoiding the high initial costs, we are pursuing a joint
Japan-Europe Research project under the Ministry of Inter-
nal Affairs and Communications, Strategic Information and
Communications R&D Promotion Programme (SCOPE),
called “Federating IoT and cloud infrastructures to provide
scalable and interoperable Smart Cities applications, by in-
troducing novel IoT virtualization technologies (Fed4IoT).”
The project is a three-year project and started in 2018.

2. Fed4IoT System

2.1 Concept

The goals of Fed4IoT project are two-fold: making existing
IoT system silos interoperable and lowering the initial cost
to deploy IoT services. To fulfill the objectives, Fed4IoT
project developed a few mechanisms to connect IoT systems
adopting different IoT platforms and to share IoT devices.
The mechanisms are IoT device virtualization, IoT platform
virtualization, and data sharing infrastructure.

IoT devices are virtualized to be shared and reused.
Here virtualization means preparing interface to IoT devices
through software. The software provides the mechanism
required for sharing and reuse. To share an IoT device among
many users, access from the users need to be controlled. In
particular, actuation from users must be properly regulated,
or synchronized, to perform proper actuation. For example,
one user tries to move a camera to the right while the other
user is moving the camera to the left (Fig. 1). If we allow
both users to control the same camera, we have a problem.
Also, to promote reuse of IoT devices, preparing variety in

C
a

m
e

ra
 #

1

Real

Camera

C
a

m
e

ra
 #

2

Virtualization

Fig. 1: Actuation Synchronization

Copyright © 2020 The Institute of Electronics, Information and Communication Engineers

2020 International Conference on Emerging Technologies for Communications (ICETC 2020)
2

A
n

a
ly

tic
s
 #

1

Virtual

Person

Counter Real

Camera

A
n

a
ly

tic
s
 #

2 Virtual Face

Detection

Sensor

Virtualization

Fig. 2: Providing multple functions with virtual IoT devices

the functionality of the virtualized IoT devices can help. If
a surveillance camera can provide person count and person
finding capabilities (Fig. 2) in addition to simply providing
the picture, the camera can be shared by more users.

To share IoT devices among many users, each user
should be isolated from other users so that they can cre-
ate programs without interference from the other users. This
is like isolation in virtual machines in computing. To pro-
vide the isolated IoT service development environment, the
concept of virtual silo (vSilo) is proposed. The IoT platforms
contain IoT brokers where all information regarding IoT de-
vices is stored and the information reflects the status of the
IoT devices. Reading from the broker provides the current
readings of IoT devices and writing to the broker controls
IoT devices. Each vSilo is equipped with an IoT broker.

Then, virtualized shared IoT devices and IoT platforms
of users must be able to communicate. The communication
network should support multicast since one virtual IoT device
may need to convey its data to multiple users. In addition,
data format must be standardized within the network. The
data is converted at the entrance and exit of the network to
support different environments at both IoT device side and
user side.

2.2 Architecture

Fig. 3 shows the system architecture of Fed4IoT. Root Data
Domain at the left-hand side of the diagram houses existing
IoT systems adopting heterogeneous IoT platforms. Real IoT
devices belong to the IoT systems. Users are shown at the
right-hand side of the diagram. Here the users develop their
own IoT services and use them. What exists in between is
the system developed by Fed4IoT project called VirIoT.

ThingVisor at the left in VirIoT virtualizes real IoT de-
vices. ThingVisors act as the gateways to IoT devices in
heterogeneous IoT systems. Each IoT system has its own
idiosyncrasy in terms of access mechanism, information ex-
pression, and others. ThingVisors are responsible to resolve
the idiosyncrasy and connect IoT devices to VirIoT. Typi-
cally, one ThingVisor is responsible in connecting one IoT
device. It is the design decision in the ThingVisor, how-
ever. One ThingVisor may control more than one IoT device.
Also, one ThingVisor may create more than one virtual IoT
device as explained in Fig. 2. Each vThing in the diagram
corresponds with one virtual IoT device.

ThingVisor acts as the arbitrator in actuation. If more
than one user send actuation messages to one vThing or
vThings, the ThingVisor in charge of the IoT device arbitrates
the requests and controls the IoT device appropriately.

A vSilo at the right in VirIoT is an IoT service develop-
ment and execution environment for particular IoT services.
vSilo provides an isolated environment to run the IoT ser-
vices. Each vSilo is equipped with an IoT broker which
reflects the states of IoT devices and provides the access
and control points for IoT devices. At this moment, VirIoT
supports brokers for oneM2M [1], FIWARE [2], and NGSI-
LD [3]. The user who want to have his/her own vSilo can
create a vSilo with either oneM2M, FIWARE, or NGSI-LD
flavor.

Data delivery platform in VirIoT is publish/subscribe
(Pub/Sub) at this moment. Pub/Sub mechanism abstracts
message destinations. The destinations of a published mes-
sage are defined by the topic included in the message. The
party intends to receive messages of a certain topic sub-
scribes the topic at the rendezvous point of the Pub/Sub
mechanism. Then, the party receives all the published mes-
sages with the specified topic. Pub/Sub provides multicast
capability with abstract destination specification.

3. IoT and Service Function Chaining

Some applications of IoT systems require low latency. To
support low latency edge computing is proposed. Also, a
large number of IoT devices are expected to be connected
even in one IoT system. By federating and connecting the
IoT systems, and making one IoT application control a large
number of devices, we foresee a large number of message
exchanges between IoT devices and their server to handle the
data. We conjecture that edge computing is not enough to
handle the huge number of IoT devices and exploiting the
continuum of computing spreading between edges and cloud
data centers is necessary.

That is, the network itself needs to be a computing facil-
ity to process IoT data. Routers are equipped with computing
facilities. The data from IoT devices is aggregated at the in-
termediate routers. The aggregation may be bundling data,
statistical calculation, intermediate data generation among
others. From this view of IoT systems, we are implementing
ThingVisors as micro services deployed over the computing
continuum, and let them cooperate. In other words, service
function chaining is applied in making ThingVisors. For ex-
ample, a chain of ThingVisors can create multiple vThings
as shown in Fig. 4. The image taken by a camera is captured
by a ThingVisor. The output makes a vThing where the
captured image is accessible. The output of image capture
ThingVisor is input to the human detection ThingVisor. The
output of the human detection ThingVisor is propagated to
both face detection and human counter ThingVisors, and so
forth. By the chain of ThingVisors, three virtual IoT devices,
or vThings: captured image, face image, and # customers be-
come available without accessing the original camera for the
three vThings separately.

2020 International Conference on Emerging Technologies for Communications (ICETC 2020)
3

Root
Data

Domain

Bob

Master Controller

vThing 1.a

vThing 1.b

vThing 1.c

ThingVisor 1

vThing 2.a

vThing 2.b

vThing 2.c

ThingVisor 2

vThing x.a

vThing x.b

vThing x.c

ThingVisor x

vThing 3.a

vThing 3.b

vThing 3.c

ThingVisor 3

MQTT and HTTP
Service Mesh

OpenData
(WEB)

H
e

te
ro

g
e

n
e

o
u

s
 I
o

T
 S

y
s
te

m
s

w
it
h

ÊR
e

a
l
T

h
in

g
s

System
Database

data planecontrol plane

oneM2M vSilo
Controllers

oneM2M
vSilo a

NGSI vSilo
Controllers

NGSI
vSilo b

Hana

Lucas

NGSI-LD vSilo
Controllers

NGSI-LD
vSilo c

MQTT vSilo
Controllers

MQTT
vSilo d

upstream IoT
Platforms

Andrea

Fig. 3: Fed4IoT Architecture

ICN or Pub/Sub

T
V

: c
a
m

e
ra

a
d

a
p

te
r 1

T
V

: im
a
g

e

c
a
p

tu
re

T
V

: h
u
m

a
n

d
e
te

c
tio

n

T
V

: fa
c
e

d
e
te

c
tio

n

TV: ThingVisor

T
V

: h
u
m

a
n

c
o

u
n
te

r

T
V

: c
a
m

e
ra

a
d

a
p

te
r 2

v
T

h
in

g
:

fa
c
e
 im

a
g

e

vThing:
captured

image

v
T

h
in

g
:

#
 c

u
s
to

m
e
rs

Fig. 4: Creation of vThings by SFC of ThingVisors

3.1 Networking for IoT Service Function Chaining

ThingVisors are created as micro services. Now, we need to
connect them. As the network connecting ThingVisors we
chose two types of networking: ICN and Pub/Sub.

Micro services are components to construct IoT ser-
vices. ThingVisors are therefore potentially shared among
many IoT services. For this reason, some of the ThingVi-
sors will be more loaded than others. In order to avoid
load concentration, some of the ThingVisors require multi-
ple deployment and load need to be distributed among them.
Abstract addressing in ICN and Pub/Sub helps distributing
load among multiple ThingVisors. Topics are used to direct
published messages to subscribers in Pub/Sub networking.
Content names are used to direct interest packets to produc-
ers of the content. By using the abstract addresses: topics
and content names, we have the flexibility to compose chains
of service functions while distributing load.

Up to now, Pub/Sub is the commonly used networking
mechanism for IoT systems. Sensors with one type publish
their readings with a topic. The IoT server who is responsible
to the sensor type subscribes the topic. In this way, readings
from all interested sensors can be collected by the IoT server.

For example, to distribute load using Pub/Sub, topic:
“human detection” may be used to publish the output from
the human detection ThingVisor in Fig. 4. The face detection

ThingVisor and the human counter ThingVisor can receive
the output of the human detection ThingVisor by subscrib-
ing to the topic “human detection.” Since human detection
is a computing intensive function, there may be several in-
stances of the human detection ThingVisor and they may
split the workload among the instances. The captured im-
ages transmitted by the image capture ThingVisor can be
received by multiple instances of human detection ThingVi-
sors. By configuring the human detection ThingVisors so
that only one of the instances receive the image and apply
its function, we can split the load among many instances.
If all the human detection ThingVisors publish their result
with the same topic “human detection,” the face detection
ThingVisor and the human counter ThingVisor can properly
apply their functions to all the human detection information.

However, Pub/Sub is not handy for implementing SFC.
Assume the output of ThingVisor: camera adapter 2 is used
only for counting human. Then, human counter cannot sim-
ply subscribe to the output of human detector ThingVisor.
Instead, the topic needs to be the one specifying the camera
adapter 2 ThingVisor, an image capture ThingVisor, and a
human detection ThingVisor, and also their application or-
der. Then, there will be huge variety of topics for Pub/Sub.

Assume ICN is used instead of Pub/Sub. Then, we can
specify the content name and a series of function names as the
content name of interest packet to execute a chain of service
functions. For example, to count the number of people in
the picture taken by the camera connected to camera adapter
2 ThingVisor in Fig. 4, we may be able to express the chain
by “TV:camera adapter 2/TV:image capture/TV:human de-
tection/TV:human counter.” Here the distribution of load
is achievable by selecting an appropriate ThingVisors at the
network level, i.e. routing.

We believe that both push type data delivery like
Pub/Sub and pull type delivery like ICN are required for
IoT networking. IoT devices with a tight power budget ask
push type delivery. Sensors wake up to sense, push the mea-
surements to the network, and immediately go to sleep mode
to save energy. On the other hand, IoT services may not

2020 International Conference on Emerging Technologies for Communications (ICETC 2020)
4

Data packet
/sensor/f1/f2/f3

f1 f3f2

(a) Without Cache

Data packet
/sensor/f1/f2

Data packet
/sensor/f1

Data packet
/sensor/f1/f2/f3

Data packet
/sensor/f1/f2/f3

pseudo-

consumer: c1

pseudo-

consumer: c2

pseudo-

consumer:c3

f1 f3f2

(b) With Cache

Fig. 5: SFC With and Without Cache

require data from IoT devices in the frequency determined
by IoT device activation. IoT services may retrieve data less
frequently. In this case, pull type data delivery fit more than
the push type delivery. In this sense, both Pub/Sub and ICN
should co-exist in an IoT network.

3.2 Caching in IoT Systems

One feature in ICN is content caching capability at routers.
The content delivered in response to a request may be cached
at any routers. Executing a series of service functions in
SFC causes delay. Making use of cache in conjunction with
service functions has potential to lower latency.

In ordinary SFC, a sequence of service function execu-
tion is triggered by reception of a request to execute a service
function chain at the first service function in the chain. After
finishing the execution of the first function, the next func-
tion is executed. Then, after the second function, the third
function is triggered and so forth. A chain of functions is
executed one after another. Fig. 5a shows an example. The
IoT server requests /sensor/f1/f2/f3 in a Interest packet.
Here /sensor/f1/f2/f3 means applying functions f1, f2,
and f3 in that order to the sensor reading. The service func-
tions f1, f2, and f3 are executed one after another.

In IoT systems, sensor readings are taken in a regular
interval and actuators may be controlled in response to the
sensor readings. In other words, service function chains
are typically executed periodically. From this perspective,
service functions do not need to wait until the arrival of the
trigger from the previous service function in the chain, know-
ing the periodic triggering and having caching capability in
hand. Instead, if the service functions are locally and peri-
odically requested, the cache can be populated periodically.
By repeating this local triggering at every service function
in the chain, the links are connected eventually and make a
chain of service functions as needed.

As shown in Fig. 5b, by enabling caching and craft-
ing pseudo-consumer capability, each pseudo-consumer re-
quests with its designated content and function names.
For example, pseudo-consumer c1 requests /sensor/f1,
pseudo-consumer f2 requests /sensor/f1/f2, and so on.
Then, the cache at the router of c1 is populated with the result
for the request /sensor/f1, and the cache at the router of c2
is populated with the result for the request /sensor/f1/f2,
etc. The data taken from the sensor is processed by each
function one after another and eventually delivered to the
IoT server though the activation of the functions are not
directly triggered by each other.

One issue to be solved in the asynchronous SFC forma-
tion is the end-to-end delay from the sensor to the IoT server.
If the activation intervals of the pseudo-customers and their
activation phases are not well configured, the end-to-end de-
lay can get long and the sensor reading may become tardy
by the time it is received by the IoT server. Unless fresh
data from the sensor is required for a chain, however, this
asynchronous configuration of SFC reduces response times
and may be favorable for some applications.

How to configure the interval and phase of a pseudo-
consumer while the ourput of the function is used by multiple
service functions requires further study including the setting
of the values and the mechanism to set those values.

4. Conclusions

Fed4IoT which aims to federate heterogeneous IoT systems
and is an EU-JP joint research project is introduced in this
paper. At the time of this writing, VirIoT, the federation
mechanism of Fed4IoT, adopts Pub/Sub as its communi-
cation mechanism. We are extending the communication
mechanism to include ICN to well support micro service
style implementation of ThingVisors. As an additional plus,
we showed that caching capability in ICN can be exploited
to reduce response time of SFC executions.

ACKNOWLEDGMENT

The research leading to these results has been supported
by the EU-JAPAN initiative by the EC Horizon 2020 Work
Programme (2018-2020) Grant Agreement No.814918 and
Ministry of Internal Affairs and Communications “Strate-
gic Information and Communications R&D Promotion Pro-
gramme (SCOPE)” Grant no. JPJ000595, “Federating IoT
and cloud infrastructures to provide scalable and interop-
erable Smart Cities applications, by introducing novel IoT
virtualization technologies (Fed4IoT).”

References

[1] oneM2M, “oneM2M web page.” [Online]. Available: https://onem2m.org,
Last accessed on July 16, 2019.

[2] “FIWARE web page.” [Online]. Available: https://www.fiware.org.
[3] ETSI, “Context information management (CIM); NGSI-LD primer,”

Recommendation ITU-T ETSI GR CIM 008 V1.1.1 (2020-03), ETSI,
March 2020.

